Proof of absence of local conserved quantity in some nonintegrable models

Naoto Shiraishi (Gakushuin university)

N. Shiraishi, Europhys. Lett. 128 17002 (2019)

Outline

Background

Proof (case of 3-support)

Proof (general case)

Extension

Outline

Background

Proof (case of 3-support)

Proof (general case)

Extension

Integrable systems and non-integrable systems

Integrable systems

- Many models are proven to be integrable.
- Various techniques are developed.
- A little artificial (e.g., no thermalization)

Non-integrable systems

- Almost all natural systems are considered to be non-integrable.
- No concrete model is proven to be nonintegrable!

Local conserved quantity

We employ **absence of local conserved quantity** as a working definition of non-integrability.

<u>Def : local conserved quantity (LCQ)</u> Conserved quantity given by sum of local quantities

We can show presence of LCQ in some systems. Can we show **absence** of LCQ in a concrete system?

Main result

<u>Theorem</u>

S=1/2 XYZ chain with z magnetic field (with p.b.c.) $H = \sum_{i} J_{x} S_{i}^{x} S_{i+1}^{x} + J_{y} S_{i}^{y} S_{i+1}^{y} + J_{z} S_{i}^{z} S_{i+1}^{z} + h S_{i}^{z}$ has no nontrivial LCQ if $J_{x}, J_{y}, J_{z} \neq 0$, $J_{x} \neq J_{y}$ and $h \neq 0$.
(N. Shiraishi, Europhys. Lett. 128 17002 (2019))

Other examples

- Heisenberg model with next-nearest interaction
- Heisenberg model with staggered magnetic field

Outline

Background

Proof (case of 3-support)

Proof (general case)

Extension

Q: candidate of conserved quantity (CQ)Q is shift invariant because H is shift invariant

Ex)
$$Q = \sum_{i} 2X_i X_{i+1} X_{i+2} - 3X_i X_{i+1} Y_{i+2} + \cdots$$

k-support conserved quantity

<u>k-support operator</u>: Shift sum of operators supported by k contiguous sites.

<u>k-support CQ</u>: Conserved quantity which consists of at most k-support operators.

<u>Approach for proof</u>: Proving absence of k-support CQ from small k.

What we should do (for k = 3)

Candidate of 3-support CQ

Theorem (for k = 3) If [Q, H] = 0, then $q_{ABC} = 0$ for any ABC.

$$-i[X_iY_{i+1}Z_{i+2}, X_{i+2}X_{i+3}] = 2X_iY_{i+1}Y_{i+2}X_{i+3},$$

Denote it as follows (including multiplication of -i)

$$\begin{array}{ccccccc} X & Y & Z \\ & & X & X \\ \hline 2 & X & Y & Y & X \end{array}$$

$$-i[X_iY_{i+1}Z_{i+2}, X_{i+2}X_{i+3}] = 2X_iY_{i+1}Y_{i+2}X_{i+3},$$

Denote it as follows (including multiplication of -i)

$$-i[X_iY_{i+1}Z_{i+2}, X_{i+2}X_{i+3}] = 2X_iY_{i+1}Y_{i+2}X_{i+3},$$

$$-i[Z_{i+1}Y_{i+2}X_{i+3}, X_iX_{i+1}] = 2X_iY_{i+1}Y_{i+2}X_{i+3}.$$

Denote it as follows (including multiplication of -i)

Relation between coefficients in Q

Because coefficient of XYYX in [Q, H] is zero,

$$q_{XYZ} + q_{ZYX} = 0$$

Some coefficients are zero

This is the unique commutation generating XXXY X X Z Y Y-2 X X X Y

(no operator satisfies the following relation)

$$\begin{array}{cccc} ? & ? & ? \\ X & X \\ \pm 2 & X & X & X \end{array}$$

Some coefficients are zero

This is the unique commutation generating XXXY X X Z Y Y-2 X X X Y

Because the coefficient of *XXXY* in [*Q*, *H*] is zero, $q_{XXZ} = 0$

Connecting coefficient to another coefficient known to be zero

Since coefficient of *XXZ* is zero, coefficient of operators "pairing with" *XXZ* is also zero.

 $\rightarrow \qquad J_Z q_{YZY} + J_Y q_{XXZ} = 0 \\ \rightarrow \qquad J_Z q_{YZY} = -J_Y q_{XXZ} = 0$

Consequence from consideration of 4-support operators

 q_{ABC} is zero if

- two of A, B, C are the same, or
- B = I

Coefficients which might be nonzero are only

$$J_X q_{YXZ} = J_Y q_{ZYX} = J_Z q_{XZY}$$
$$= -J_X q_{ZXY} = -J_Y q_{XYZ} = -J_Z q_{YZX}.$$

It suffices to prove one of them is zero!

Analysis on 3-support operators

Consider YZY in [Q, H].

- (single Z comes from z magnetic field in Hamiltonian)
- Usually, 4 types of commutators "generate" a single 3-support operator

$$\rightarrow \quad h(q_{YZX} + q_{XZY}) - J_Y(q_{YX} + q_{XY}) = 0$$

Operators generated by only 3 types of commutators

Some 3-support operators are generated by 3 types of commutators in [Q, H].

No 2-support operator in Q satisfies

$$\begin{array}{ccc} ? & ? \\ Y & Y \\ \hline -2 & Y & Y & Z \end{array}$$

Operators generated by only 3 types of commutators

Some 3-support operators are generated by 3 types of commutators in [Q, H].

Relations between coefficients

The obtained three equalities

$$h(q_{XYZ} + q_{YXZ}) + J_Z q_{XY} = 0$$

$$h(q_{YZX} + q_{XZY}) - J_Y (q_{YX} + q_{XY}) = 0$$

$$h(q_{XYZ} + q_{YXZ}) + J_Z q_{YX} = 0$$

By erasing q_{XY} , q_{YX} , and using

$$J_X q_{YXZ} = J_Y q_{ZYX} = J_Z q_{XZY}$$
$$= -J_X q_{ZXY} = -J_Y q_{XYZ} = -J_Z q_{YZX},$$

Result (for k = 3)

$$3h\left(1-\frac{J_Y}{J_X}\right)q_{XYZ}=0$$

Unless h = 0 (XYZ model) or $J_X = J_Y$ (XXZ model with a z-magnetic field), we have $q_{XYZ} = 0$

→Absence of 3-support conserved quantity!

Outline

Background

Proof (case of 3-support)

Proof (general case)

Extension

logic flow for k = 3

Analysis on 4-support operators in [Q, H]

- Restrict a candidate of 3-support CQ in a specific form
- Derive linear relation between coefficients

Analysis on 3-support operators in [Q, H]

 Demonstrating coefficient of one of remaining 3-support operators equal to zero.

Logic flow for general k is almost the same!

logic flow for general k

Analysis on k+1-support operators in [Q, H]

- Restrict a candidate of k-support CQ in a specific form
- Derive linear relation between coefficients

Analysis on k-support operators in [Q, H]

 Demonstrating coefficient of one of remaining k-support operators equal to zero.

logic flow for general k

Analysis on k+1-support operators in [Q, H]

- Restrict a candidate of k-support CQ in a specific form
- Derive linear relation between coefficients

Analysis on k-support operators in [Q, H]

 Demonstrating coefficient of one of remaining k-support operators equal to zero.

Which coefficients are connected in analysis on k+1-support operators

Coefficient of *YZZZX* and that of *XZZYZ* are in linear relation.

Why *YZZZX* and *XZZYZ* are connected? What property lies in these two operators?

Signless product

Signless product of Pauli matrices XY = YX = Z, XZ = ZX = Y, YZ = ZY = X

Doubling operator: *XX*, *YY*, *ZZ* **Doubling-product**: operators expressed as above.

Why these two are connected?

By removing *YY* **from left, and adding** *ZZ* **to right**, *YZZZX* becomes *XZZYZ*.

Connected operators through commutation relations

Connection between operators:

→Adding/removing doubling operators (XX, YY, ZZ) at the left/right end

We then find...

Doubling-product : maybe nonzero coefficient Not doubling-product : zero coefficient!

Coefficients which might be nonzero are $J_X q_{YXZ} = J_Y q_{ZYX} = J_Z q_{XZY}$ $= -J_X q_{ZXY} = -J_Y q_{XYZ} = -J_Z q_{YZX},$

Ex) YZX can be expressed as

$$\begin{array}{cccccccc}
Y & Y \\
& X & X \\
\hline
Y & Z & X
\end{array}$$

How coefficient of non-doublingproduct operator vanishes?

Consequence of analysis on k+1-support operators

Analysis on k+1-support operators in [Q, H]

- Restrict a candidate of k+1-support CQ in a specific form
- →Non-doubling-product operator has zero coefficient.
- Derive linear relation between coefficients
 →Coefficients of doubling-product operators are obviously in linear relation.

logic flow for general k

Analysis on k+1-support operators in [Q, H]

- Restrict a candidate of k+1-support CQ in a specific form
- Derive linear relation between coefficients

Analysis on k-support operators in [Q, H]

 Demonstrating coefficient of one of remaining k-support operators equal to zero.

Analysis on 3-support operators (revisit)

3-support in *Q* 1-support in *H* k-support in *Q* 1-support in *H*

2-support in Q
2-support in H
k-1-support in Q
2-support in H

Where can z magnetic field act?

Where can z magnetic field act?

Corresponding k-1-support + 2-support

Z ZYZ ZZ ZX XX X $Y \mid Y$ Y YX XX XZZY X Y Z Z X ZZ X X Y Z Z Y ZZ ZZZ X X Y Z Z X Z Z X Z Z X Z Z X Z

Corresponding k-1-support + 2-support

Z	Z Y	Y Z	Z X	X Y	Y			Z	Z Y	Y Z	Z X	X Y	Y		
					X	X							X	X	
						Z	Z							Z	
Z	X	X	Y	Z	Z	Y	Z	Z	X	X	Y	Z	Z	Y	
						Z								Z	Z
Ζ	X	X	Y	Z	Z	X	Z	Z	X	X	Y	Z	Z	X	Z

Analysis on 3-support operators (revisit)

Some 3-support operators are generated by 3 types of commutators in [Q, H].

> 3-support in *Q* 1-support in *H* k-support in *Q* 1-support in *H*

 $\begin{array}{cccc} Y & X \\ & Z & Z \\ \hline -2 & Y & Y & Z \end{array}$

2-support in Q2-support in H

k-1-support in Q 2-support in H

k-support operator generated by one type of k-1-support + 2-support

If left/right end of two operators are the same, 2support operator in H cannot act (ex: k = 6).

k-support operator generated by one type of k-1-support + 2-support

If left/right end of two operators are the same, 2support operator in H cannot act (ex: k = 6).

k-support operator generated by one type of k-1-support + 2-support

If left/right end of two operators are the same, 2support operator in H cannot act (ex: k = 6).

Only single commutation generates this operator if

- Ordering XX (or YY), ZZ from left/right end
- z act at left/rightmost or next to left/rightmost.

$$h(q_{XYZ} + q_{YXZ}) + J_Z q_{XY} = 0$$

$$h(q_{YZX} + q_{XZY}) - J_Y (q_{YX} + q_{XY}) = 0$$

$$h(q_{XYZ} + q_{YXZ}) + J_Z q_{YX} = 0$$

k-support $\begin{aligned} k-1-support \\ h(q_{XYZ} + q_{YXZ}) + \\ J_Z q_{XY} &= 0 \\ h(q_{YZX} + q_{XZY}) - J_Y (q_{YX} + q_{XY}) &= 0 \\ h(q_{XYZ} + q_{YXZ}) + J_Z q_{YX} &= 0 \end{aligned}$

k-support $\begin{aligned} h(q_{XYZ} + q_{YXZ}) + & J_{Z}q_{XY} = 0 \\ h(q_{YZX} + q_{XZY}) - & J_{Y}(q_{YX} + q_{XY}) = 0 \\ h(q_{XYZ} + q_{YXZ}) + & J_{Z}q_{YX} = 0 \end{aligned}$

k-support $\begin{aligned} h(q_{XYZ} + q_{YXZ}) + & J_Z q_{XY} = 0 \\ h(q_{YZX} + q_{XZY}) - & J_Y (q_{YX} + q_{XY}) = 0 \\ h(q_{XYZ} + q_{YXZ}) + & J_Z q_{YX} = 0 \end{aligned}$

Same terms are canceled!

What we seek for case of k-support

Same terms are canceled!

The sequence

$\uparrow_{Z} \overline{YZXY} \cdots \overline{YXZXY}$	$\overline{X} \uparrow_{\overline{Z}} \overline{ZXY} \cdots \overline{YXZXY}$	$ \overline{YZXY}\cdots\overline{YXZX}\stackrel{\leftarrow}{+}\overline{Y}$	
$\uparrow_{Z} \overline{XYZXY} \cdots \overline{YXZX}$	$\overline{YX} \stackrel{2}{\uparrow} \overline{ZXY} \cdots \overline{YXZX}$	$ \overline{XYZXY}\cdots\overline{YXZ}\stackrel{\leftarrow}{+}\overline{X}$	$\overline{Y} \stackrel{\rightarrow}{+} \overline{X} \stackrel{Z}{ } \overline{ZXY} \cdots \overline{YXZX}$
$\uparrow_{Z} \overline{YXYZXY} \cdots \overline{YXZ}$	$\overline{XYX} \mathop{\uparrow}_{Z} \overline{ZXY} \cdots \overline{YXZ}$	$ \overline{YXYZXY}\cdots\overline{YX}\stackrel{\leftarrow}{+}\overline{Z}$	$\overline{X} \stackrel{\rightarrow}{+} \overline{YX} \stackrel{Z}{ } \overline{ZXY} \cdots \overline{YXZ}$
$\overline{Z} \uparrow_{Z} \overline{YZYZXY} \cdots \overline{YX}$	$\overline{ZXYX} \mathop{\uparrow}\limits_{Z} \overline{ZXY} \cdots \overline{YX}$	$\overline{Z} \Big \overline{YZYZXY} \cdots \overline{Y} \stackrel{\leftarrow}{+} \overline{X}$	$\overline{Z} \stackrel{\rightarrow}{+} \overline{XYX}^Z \overline{ZXY} \cdots \overline{YX}$
:	:	÷	÷
÷	÷	÷	÷
$\overline{XY}\cdots\overline{YXZ} \uparrow \overline{YXYZ}$	$\overline{XY}\cdots\overline{YXZXYX} \stackrel{\wedge}{\uparrow} \overline{Z}$	$\overline{XY}\cdots\overline{YXZ} \Big \overline{YXY} \stackrel{\leftarrow}{+} \overline{Z}$	$\overline{X} \stackrel{\rightarrow}{+} \overline{Y} \cdots \overline{YXZXYX} \Big \overline{Z}$
$\overline{ZXY}\cdots\overline{YXZ}\uparrow \overline{YXY}$	$\overline{ZXY}\cdots\overline{YXZXYX}\uparrow_{Z}$	$\overline{ZXY}\cdots\overline{YXZ}^{Z} \overline{YX}\overset{\leftarrow}{+}\overline{Y}$	$\overline{Z} \stackrel{\rightarrow}{+} \overline{XY} \cdots \overline{YXZXYX} \Big ^Z$
$\overline{YZXY}\cdots\overline{YXZ} \stackrel{z}{\uparrow} \overline{YX}$	$\overline{YZXY}\cdots\overline{YXZXY} \uparrow_{Z}$	$\overline{YZXY}\cdots\overline{YXZ}^{Z} \overline{Y}\overset{\leftarrow}{+}\overline{X}$	$\overline{Y} \stackrel{\rightarrow}{+} \overline{ZXY} \cdots \overline{YXZXY} \Big ^Z$
$\overline{XYZXY}\cdots\overline{YXZ} \mathop{\uparrow}_{Z} \overline{Y}$	$\overline{XYZXY}\cdots\overline{YXZX} \uparrow_Z$		$\overline{X} \stackrel{\rightarrow}{+} \overline{YZXY} \cdots \overline{YXZX} \Big ^Z$
			

New symbols

- \overline{X} : Doubling operator XX (similar to YY, ZZ) If ordered, we take one-site shift.
- \uparrow_Z : Commutation with k-support operator. Commutation with z magnetic field
- \int_{1}^{2} : Using when construct k-1-support operator Multiply Z at this position
- $\stackrel{\scriptscriptstyle
 ightarrow}{+}$: Commutation relation at this edge.

Examples

 \overline{ZXYZX}

Examples

Z ZX XY YZ ZX XZ Y Z X Y XΖ Z Y Z X X X

 $\overline{ZX}\overline{Y}\overline{Z}\uparrow X$ Z

Examples

Z ZX XY YZ ZX XZ Y Z X Y XΖ Z Y Z X X X

 $\overline{ZXYZ} \uparrow X$

X XY YZ ZX XZX Z X X XZ ZZ Y Z X X X

 $\overline{Z} \stackrel{\rightarrow}{+} \overline{XYZ} \stackrel{Z}{|} \overline{X}$

Structure

Details are not important

Structure

Since k-1-support operators are determined automatically, we hereafter omit them.

$\mathop{\uparrow}_{Z} \overline{YZXY} \cdots \overline{YXZXY}$	$\overline{X} \underset{Z}{\uparrow} \overline{ZXY} \cdots \overline{YXZXY}$	$ \overline{YZXY}\cdots\overline{YXZX} \stackrel{\leftarrow}{+}\overline{Y}$	
$\mathop{\uparrow}_{Z} \overline{XYZXY} \cdots \overline{YXZX}$	$\overline{YX} \underset{Z}{\uparrow} \overline{ZXY} \cdots \overline{YXZX}$	$\Big \overline{XYZXY} \cdots \overline{YXZ} + \overline{X}$	$\overline{Y} \stackrel{\rightarrow}{+} \overline{X} \stackrel{Z}{ } \overline{ZXY} \cdots \overline{YXZX}$
$\mathop{\uparrow}_{Z} \overline{YXYZXY} \cdots \overline{YXZ}$	$\overline{XYX} \mathop{\uparrow}_{Z} \overline{ZXY} \cdots \overline{YXZ}$	$ \overline{YXYZXY}\cdots\overline{YX}\stackrel{\leftarrow}{+}\overline{Z}$	$\overline{X} \stackrel{\rightarrow}{+} \overline{YX} \stackrel{Z}{ } \overline{ZXY} \cdots \overline{YXZ}$
$\overline{Z} \underset{Z}{\uparrow} \overline{YZYZXY} \cdots \overline{YX}$	$\overline{ZXYX} \underset{Z}{\uparrow} \overline{ZXY} \cdots \overline{YX}$	$\overline{Z} \Big \overline{YZYZXY} \cdots \overline{Y} \stackrel{\leftarrow}{+} \overline{X}$	$\overline{Z} \stackrel{\rightarrow}{+} \overline{XYX} \stackrel{Z}{ } \overline{ZXY} \cdots \overline{YX}$
÷	÷	÷	÷
÷	÷	÷	÷
$\overline{XY}\cdots\overline{YXZ} \uparrow \overline{YXYZ}$	$\overline{XY}\cdots\overline{YXZXYX} \stackrel{\wedge}{_{Z}} \overline{Z}$	$\overline{XY}\cdots\overline{YXZ} \Big \overline{YXY} \stackrel{\leftarrow}{+} \overline{Z}$	$\overline{X} \stackrel{\rightarrow}{+} \overline{Y} \cdots \overline{YXZXYX} \stackrel{Z}{ } \overline{Z}$
$\overline{ZXY}\cdots\overline{YXZ} \uparrow_{Z} \overline{YXY}$	$\overline{ZXY}\cdots\overline{YXZXYX} \uparrow_Z$	$\overline{ZXY}\cdots\overline{YXZ} \Big \overline{YX} \stackrel{\leftarrow}{+} \overline{Y}$	$\overline{Z} \stackrel{\rightarrow}{+} \overline{XY} \cdots \overline{YXZXYX} \Big ^{Z}$
$\overline{YZXY}\cdots\overline{YXZ} \underset{Z}{\uparrow} \overline{YX}$	$\overline{YZXY}\cdots\overline{YXZXY} \uparrow_Z$	$\overline{YZXY}\cdots\overline{YXZ} \stackrel{Z}{\mid} \overline{Y} \stackrel{\leftarrow}{+} \overline{X}$	$\overline{Y} \stackrel{\rightarrow}{+} \overline{ZXY} \cdots \overline{YXZXY} \Big ^{Z}$
$\overline{XYZXY}\cdots\overline{YXZ}\uparrow\overline{Y}$	$\overline{XYZXY}\cdots\overline{YXZX}\uparrow$		$\overline{X} \stackrel{\rightarrow}{+} \overline{YZXY} \cdots \overline{YXZX} \Big ^Z$

ſ

Z ZZ ZX XY YX XY YY YX XZ ZZ Z $Z Y Z Z Y \cdots$ $Z X Z Z \dots$ ZZ $Z Y Z Z X \cdots$ $Z Y Z Z X \cdots$

- Inserting alternate XX, YY does not convey the leftmost Z.
- Inserting ZZ triggers to move Z to right.

$\mathop{\uparrow}_{Z} \overline{YZXY} \cdots \overline{YXZXY}$	$\overline{X} \underset{Z}{\uparrow} \overline{ZXY} \cdots \overline{YXZXY}$	$ \overline{YZXY}\cdots\overline{YXZX} \stackrel{\leftarrow}{+} \overline{Y}$	
$\mathop{\uparrow}_{Z} \overline{XYZXY} \cdots \overline{YXZX}$	$\overline{YX} \mathop{\uparrow}_{Z} \overline{ZXY} \cdots \overline{YXZX}$	$ \overline{XYZXY}\cdots\overline{YXZ}\stackrel{\leftarrow}{+}\overline{X}$	$\overline{Y} \stackrel{\rightarrow}{+} \overline{X} \stackrel{Z}{ } \overline{ZXY} \cdots \overline{YXZX}$
$\mathop{\uparrow}_{Z} \overline{YXYZXY} \cdots \overline{YXZ}$	$\overline{XYX} \mathop{\uparrow}_{Z} \overline{ZXY} \cdots \overline{YXZ}$	$ \overline{YXYZXY}\cdots\overline{YX}\stackrel{\leftarrow}{+}\overline{Z}$	$\overline{X} \stackrel{\rightarrow}{+} \overline{YX} \stackrel{Z}{ } \overline{ZXY} \cdots \overline{YXZ}$
$\overline{Z} \underset{Z}{\uparrow} \overline{YZYZXY} \cdots \overline{YX}$	$\overline{ZXYX} \uparrow \overline{ZXY} \cdots \overline{YX}$	$\overline{Z} \Big \overline{YZYZXY} \cdots \overline{Y} \stackrel{\leftarrow}{+} \overline{X}$	$\overline{Z} \stackrel{\rightarrow}{+} \overline{XYX}^{Z} \overline{ZXY} \cdots \overline{YX}$
:	:	:	:
:	:	÷	:
$\vdots \\ \overline{XY} \cdots \overline{YXZ} \uparrow_{Z} \overline{YXYZ}$	$\vdots \\ \overline{XY} \cdots \overline{YXZXYX} \underset{Z}{\uparrow} \overline{Z}$	$\vdots \\ \overline{XY} \cdots \overline{YXZ} \Big \overline{YXY} \stackrel{\leftarrow}{+} \overline{Z}$	$\vdots \\ \overline{X} \stackrel{\rightarrow}{+} \overline{Y} \cdots \overline{YXZXYX} \Big \overline{Z}$
\vdots $\overline{XY}\cdots\overline{YXZ} \stackrel{\uparrow}{\underset{Z}{\to}} \overline{YXYZ}$ $\overline{ZXY}\cdots\overline{YXZ} \stackrel{\uparrow}{\underset{Z}{\to}} \overline{YXY}$	\vdots $\overline{XY}\cdots\overline{YXZXYX} \stackrel{\uparrow}{\underset{Z}{\to}} \overline{Z}$ $\overline{ZXY}\cdots\overline{YXZXYX} \stackrel{\uparrow}{\underset{Z}{\to}}$	$\vdots \\ \overline{XY} \cdots \overline{YXZ} \overline{YXY} \stackrel{\leftarrow}{+} \overline{Z} \\ \overline{ZXY} \cdots \overline{YXZ} \overline{YX} \stackrel{\leftarrow}{+} \overline{Y}$	$\vdots \\ \overline{X} \stackrel{\rightarrow}{+} \overline{Y} \cdots \overline{YXZXYX} \Big \overline{Z} \\ \overline{Z} \stackrel{\rightarrow}{+} \overline{XY} \cdots \overline{YXZXYX} \Big $
\vdots $\overline{XY}\cdots\overline{YXZ} \stackrel{\uparrow}{_{Z}} \overline{YXYZ}$ $\overline{ZXY}\cdots\overline{YXZ} \stackrel{\uparrow}{_{Z}} \overline{YXY}$ $\overline{YZXY}\cdots\overline{YXZ} \stackrel{\uparrow}{_{Z}} \overline{YX}$	$\vdots \\ \overline{XY} \cdots \overline{YXZXYX} \stackrel{\uparrow}{_{Z}} \overline{Z} \\ \overline{ZXY} \cdots \overline{YXZXYX} \stackrel{\uparrow}{_{Z}} \\ \overline{YZXY} \cdots \overline{YXZXY} \stackrel{\uparrow}{_{Z}} \\ \overline{YZXY} \cdots \overline{YXZXY} \stackrel{\uparrow}{_{Z}} $	\vdots $\overline{XY} \cdots \overline{YXZ} \overline{YXY} \stackrel{\leftarrow}{+} \overline{Z}$ $\overline{ZXY} \cdots \overline{YXZ} \overline{YX} \stackrel{\leftarrow}{+} \overline{Y}$ $\overline{YZXY} \cdots \overline{YXZ} \overline{Y} \stackrel{\leftarrow}{+} \overline{X}$	$\vdots \\ \overline{X} \stackrel{\rightarrow}{+} \overline{Y} \cdots \overline{YXZXYX} \stackrel{Z}{ } \overline{Z} \\ \overline{Z} \stackrel{\rightarrow}{+} \overline{XY} \cdots \overline{YXZXYX} \stackrel{Z}{ } \\ \overline{Y} \stackrel{\rightarrow}{+} \overline{ZXY} \cdots \overline{YXZXY} \stackrel{Z}{ } $

$\mathop{\uparrow}_{Z} \overline{YZXY} \cdots \overline{YXZXY}$	$\overline{X} \underset{Z}{\uparrow} \overline{ZXY} \cdots \overline{YXZXY}$	$ \overline{YZXY}\cdots\overline{YXZX}\stackrel{\leftarrow}{+}\overline{Y}$	
$\uparrow_Z \overline{XYZXY} \cdots \overline{YXZX}$	$\overline{YX} \underset{Z}{\uparrow} \overline{ZXY} \cdots \overline{YXZX}$	$ \overline{XYZXY}\cdots\overline{YXZ}\stackrel{\leftarrow}{+}\overline{X}$	$\overline{Y} \stackrel{\rightarrow}{+} \overline{X} \Big \overline{ZXY} \cdots \overline{YXZX}$
$\uparrow_{Z} \overline{YXYZXY} \cdots \overline{YXZ}$	$\overline{XYX} \stackrel{\wedge}{\underset{Z}{\to}} \overline{ZXY} \cdots \overline{YXZ}$	$ \overline{YXYZXY}\cdots\overline{YX}\stackrel{\leftarrow}{+}\overline{Z}$	$\overline{X} \stackrel{\rightarrow}{+} \overline{YX} \stackrel{Z}{ } \overline{ZXY} \cdots \overline{YXZ}$
$\overline{Z} \underset{Z}{\uparrow} \overline{YZYZXY} \cdots \overline{YX}$	$\overline{ZXYX} \uparrow_Z \overline{ZXY} \cdots \overline{YX}$	$\overline{Z} \Big \overline{YZYZXY} \cdots \overline{Y} \stackrel{\leftarrow}{+} \overline{X}$	$\overline{Z} \stackrel{\rightarrow}{+} \overline{XYX} \stackrel{Z}{ } \overline{ZXY} \cdots \overline{YX}$
:	÷	÷	÷
:	÷	:	:
$\overline{XY}\cdots\overline{YXZ} \uparrow \overline{YXYZ}$	$\overline{XY}\cdots\overline{YXZXYX} \uparrow_Z \overline{Z}$	$\overline{XY}\cdots\overline{YXZ} \Big \overline{YXY} \stackrel{\leftarrow}{+} \overline{Z}$	$\overline{X} \stackrel{\rightarrow}{+} \overline{Y} \cdots \overline{Y} \overline{X} \overline{Z} \overline{X} \overline{Y} \overline{X} \overline{Z}$
$\overline{ZXY}\cdots\overline{YXZ} \mathop{\uparrow}\limits_{Z} \overline{YXY}$	$\overline{ZXY}\cdots\overline{YXZXYX} \uparrow_Z$	$\overline{ZXY}\cdots\overline{YXZ}^{Z} \overline{YX}\stackrel{\leftarrow}{+}\overline{Y}$	$\overline{Z} \stackrel{\rightarrow}{+} \overline{XY} \cdots \overline{YXZXYX} \Big ^{Z}$
$\overline{YZXY}\cdots\overline{YXZ} \uparrow \overline{YX}$	$\overline{YZXY}\cdots\overline{YXZXY} \uparrow_Z$	$\overline{YZXY}\cdots\overline{YXZ} \stackrel{Z}{\mid} \overline{Y} \stackrel{\leftarrow}{+} \overline{X}$	$\overline{Y} \stackrel{\rightarrow}{+} \overline{ZXY} \cdots \overline{YXZXY} \Big ^{Z}$
$\overline{XYZXY}\cdots\overline{YXZ} \underset{Z}{\uparrow} \overline{Y}$	$\overline{XYZXY}\cdots\overline{YXZX} \uparrow_Z$		$\overline{X} \stackrel{\rightarrow}{+} \overline{YZXY} \cdots \overline{YXZX} \Big ^Z$
	-		

z magnetic field is moved to the right end!

Final result (k-support operator)

$$h\left(\frac{J_X}{J_Y} - 1\right)(k+2)q_{YXZZ\cdots ZYYZ} = 0$$

Unless h = 0 (XYZ model) or $J_X = J_Y$ (XXZ model with a z-magnetic field), this coefficient is zero!

→Absence of k-support conserved quantity! $(k \leq L/2)$

Outline

Background

Proof (case of 3-support)

Proof (general case)

Extension

Background structure

The term with largest contiguous support in Hamiltonian is important!

How the form of LCQ determined?

Unfortunately, deriving inconsistency between above form and terms with smaller support is adhoc (model dependent way) at present...

Case of next-nearest Heisenberg chain

$$H = \sum_{i} J_1 \frac{S_i \cdot S_{i+1}}{2 \text{ sites}} + J_2 \frac{S_i \cdot S_{i+2}}{3 \text{ sites}}$$

Form of possible k-support LCQ is e.g.,

Case of next-nearest Heisenberg chain

Form of possible k-1 support LCQ is e.g.,

Considering k-2-support LCQ, we can derive inconsistency.

Future works

- This approach also applies Heisenberg model with staggered magnetic field.
- It is important to clarify general structure.
- Application to S=1 system appears a little difficult.

