Proof of absence of local conserved quantity in some nonintegrable models

Naoto Shiraishi (Gakushuin university)
N. Shiraishi, Europhys. Lett. 12817002 (2019)

Outline

- Background
- Proof (case of 3-support)
- Proof (general case)
- Extension

Outline

- Background
- Proof (case of 3-support)
- Proof (general case)
- Extension

Integrable systems and non-integrable systems

Integrable systems

- Many models are proven to be integrable.
- Various techniques are developed.
- A little artificial (e.g., no thermalization)

Non-integrable systems

- Almost all natural systems are considered to be non-integrable.
- No concrete model is proven to be nonintegrable!

Local conserved quantity

We employ absence of local conserved quantity as a working definition of non-integrability.

Def : local conserved quantity (LCQ)
Conserved quantity given by sum of local quantities

We can show presence of LCQ in some systems. Can we show absence of LCQ in a concrete system?

Main result

Theorem

$\mathrm{S}=1 / 2 \mathrm{XYZ}$ chain with z magnetic field (with p.b.c.)

$$
H=\sum_{i} J_{x} S_{i}^{x} S_{i+1}^{x}+J_{y} S_{i}^{y} S_{i+1}^{y}+J_{z} S_{i}^{z} S_{i+1}^{z}+h S_{i}^{z}
$$

has no nontrivial LCQ if $J_{x}, J_{y}, J_{z} \neq 0, J_{x} \neq J_{y}$ and $h \neq 0$.
(N. Shiraishi, Europhys. Lett. 12817002 (2019))

Other examples

- Heisenberg model with next-nearest interaction
- Heisenberg model with staggered magnetic field

Outline

- Background
- Proof (case of 3-support)
- Proof (general case)
- Extension

Symbols in this talk (1)

Q : candidate of conserved quantity (CQ) Q is shift invariant because H is shift invariant

Ex) $Q=\sum_{i} 2 X_{i} X_{i+1} X_{i+2}-3 X_{i} X_{i+1} Y_{i+2}+\cdots$

k-support conserved quantity

k-support operator: Shift sum of operators supported by k contiguous sites.

k-support CQ: Conserved quantity which consists of at most k-support operators.

Approach for proof : Proving absence of k-support CQ from small k .

What we should do (for $k=3$)

Candidate of 3-support CQ

$$
\begin{array}{r}
Q=\sum_{i} q_{X X X} X X X+q_{X X Y} X X Y+\cdots+q_{Z I Z} Z I Z \\
\quad+q_{X X} X X+q_{X Y} X Y+\cdots+q_{Y} Y+q_{Z} Z
\end{array}
$$

at most 64 terms!

Theorem (for $\boldsymbol{k}=3$)
If $[\boldsymbol{Q}, \boldsymbol{H}]=\mathbf{0}$, then $\boldsymbol{q}_{A B C}=\mathbf{0}$ for any $A B C$.

Symbols in this talk (2)

$$
-i\left[X_{i} Y_{i+1} Z_{i+2}, X_{i+2} X_{i+3}\right]=2 X_{i} Y_{i+1} Y_{i+2} X_{i+3},
$$

Denote it as follows (including multiplication of $-i$)

$$
\begin{array}{lllll}
& X & Y & Z & \\
& & X & X \\
\hline 2 & X & Y & Y & X
\end{array}
$$

Symbols in this talk (2)

$$
-i\left[X_{i} Y_{i+1} Z_{i+2}, X_{i+2} X_{i+3}\right]=2 X_{i} Y_{i+1} Y_{i+2} X_{i+3},
$$

Denote it as follows (including multiplication of $-i$)

Symbols in this talk (2)

$$
\begin{aligned}
-i\left[X_{i} Y_{i+1} Z_{i+2}, X_{i+2} X_{i+3}\right] & =2 X_{i} Y_{i+1} Y_{i+2} X_{i+3}, \\
-i\left[Z_{i+1} Y_{i+2} X_{i+3}, X_{i} X_{i+1}\right] & =2 X_{i} Y_{i+1} Y_{i+2} X_{i+3} .
\end{aligned}
$$

Denote it as follows (including multiplication of $-i$)

site i
site $i+3$

Relation between coefficients in Q

Because coefficient of $X Y Y X$ in $[Q, H]$ is zero,

$$
q_{X Y Z}+q_{Z Y X}=0
$$

Some coefficients are zero

This is the unique commutation generating $X X X Y$

$$
\begin{array}{lllll}
& X & X & Z & \\
& & & Y & Y \\
\hline-2 & X & X & X & Y
\end{array}
$$

(\because. no operator satisfies the following relation)

Some coefficients are zero

This is the unique commutation generating $X X X Y$

$$
\begin{array}{lllll}
& X & X & Z & \\
& & & Y & Y \\
\hline-2 & X & X & X & Y
\end{array}
$$

Because the coefficient of $X X X Y$ in $[Q, H]$ is zero,

$$
q_{X X Z}=0
$$

Connecting coefficient to another coefficient known to be zero

Since coefficient of $X X Z$ is zero, coefficient of operators "pairing with" $X X Z$ is also zero.

$$
\begin{aligned}
& Y Z \quad Y \\
& \begin{array}{ccc}
X & X & Z
\end{array} \\
& \begin{array}{lllll}
& & & Z & Z \\
\hline 2 & Y & Z & X & Z
\end{array} \\
& \begin{array}{ccccc}
& Y & Y & & \\
\hline 2 & Y & Z & X & Z,
\end{array} \\
& \rightarrow \quad J_{Z} q_{Y Z Y}+J_{Y} q_{X X Z}=0 \\
& \rightarrow \quad J_{Z} q_{Y Z Y}=-J_{Y} q_{X X Z}=0
\end{aligned}
$$

Consequence from consideration

of 4-support operators

$q_{A B C}$ is zero if

- two of A, B, C are the same, or
- $B=I$

Coefficients which might be nonzero are only

$$
\begin{gathered}
J_{X} q_{Y X Z}=J_{Y} q_{Z Y X}=J_{Z} q_{X Z Y} \\
=-J_{X} q_{Z X Y}=-J_{Y} q_{X Y Z}=-J_{Z q_{Y Z X}} .
\end{gathered}
$$

It suffices to prove one of them is zero!

Analysis on 3-support operators

Consider $Y Z Y$ in $[Q, H]$.

(single Z comes from z magnetic field in Hamiltonian)
Usually, 4 types of commutators "generate" a single 3-support operator

$$
\rightarrow \quad h\left(q_{Y Z X}+q_{X Z Y}\right)-J_{Y}\left(q_{Y X}+q_{X Y}\right)=0
$$

Operators generated by only 3 types of commutators

Some 3-support operators are generated by 3 types of commutators in $[Q, H]$.

	Y	X	Z
		Z	
-2	Y	Y	Z

	Y	X	
		Z	Z
-2	Y	Y	Z

\because No 2-support operator in Q satisfies

Operators generated by only 3 types of commutators

Some 3-support operators are generated by 3 types of commutators in $[Q, H]$.

$\begin{array}{lll} X & Y & Z \\ Z & & \end{array}$	$\begin{array}{ccccccc} Y & X & Z & & Y & X & \\ & Z & & & & Z & Z \end{array}$
-2 Y Y	$\begin{gathered} -2 Y Y Y Z \quad-2 Y Y Z \\ h\left(q_{X Y Z}+q_{Y X Z}\right)+J_{Z} q_{Y X}=0 \end{gathered}$
$\begin{array}{lll} X & Y & Z \\ & Z & \end{array}$	$\begin{array}{lllllll} Y & X & Z & & X & Y & \\ Z & & & & & Z & Z \end{array}$
$2 X X Z$	$\begin{aligned} & 2 X X X Z \\ & h\left(q_{X Y Z}+q_{Y X Z}\right)+J_{Z} q_{X Y}=0 \end{aligned}$

Relations between coefficients

The obtained three equalities

$$
\begin{array}{ll}
h\left(q_{X Y Z}+q_{Y X Z}\right)+ & J_{Z} q_{X Y}
\end{array}=0
$$

By erasing $q_{X Y}, q_{Y X}$, and using

$$
\begin{gathered}
J_{X} q_{Y X Z}=J_{Y} q_{Z Y X}=J_{Z} q_{X Z Y} \\
=-J_{X} q_{Z X Y}=-J_{Y} q_{X Y Z}=-J_{Z} q_{Y Z X},
\end{gathered}
$$

Result (for $k=3$)

$$
3 h\left(1-\frac{J_{Y}}{J_{X}}\right) q_{X Y Z}=0
$$

Unless $h=0$ (XYZ model) or $J_{X}=J_{Y}$ (XXZ model with a z-magnetic field), we have $\boldsymbol{q}_{X Y Z}=\mathbf{0}$
\rightarrow Absence of 3-support conserved quantity!

Outline

- Background
- Proof (case of 3-support)
- Proof (general case)
- Extension

logic flow for $k=3$

Analysis on 4-support operators in [Q, H]

- Restrict a candidate of 3-support CQ in a specific form
- Derive linear relation between coefficients

Analysis on 3-support operators in [Q, H]

- Demonstrating coefficient of one of remaining 3-support operators equal to zero.

Logic flow for general \boldsymbol{k} is almost the same!

logic flow for general k

Analysis on $\mathrm{k}+1$-support operators in $[Q, H]$

- Restrict a candidate of k-support CQ in a specific form
- Derive linear relation between coefficients

Analysis on k-support operators in [Q, H]

- Demonstrating coefficient of one of remaining k-support operators equal to zero.

logic flow for general k

Analysis on $\mathrm{k}+1$-support operators in [$\mathbf{Q}, \boldsymbol{H}$]

- Restrict a candidate of k-support CQ in a specific form
- Derive linear relation between coefficients

Analysis on k-support operators in $[Q, H]$

- Demonstrating coefficient of one of remaining k-support operators equal to zero.

Which coefficients are connected in analysis on $\mathrm{k}+1$-support operators

$$
\begin{array}{ccccccccccccccc}
& Y & Z & Z & Z & X & & & & & X & Z & Z & Y & Z \\
& & & & & Z & Z \\
\hline-2 & Y & Z & Z & Z & Y & Z
\end{array} \quad \begin{array}{lllllll}
Y & Y & & & & \\
& & Y & Z & Z & Z & Y \\
\hline
\end{array}
$$

Coefficient of $Y Z Z Z X$ and that of $X Z Z Y Z$ are in linear relation.

Why $Y Z Z Z X$ and $X Z Z Y Z$ are connected? What property lies in these two operators?

Signless product

Signless product of Pauli matrices

$$
X Y=Y X=Z, X Z=Z X=Y, Y Z=Z Y=X
$$

$$
\left.\left\lvert\, \begin{array}{lllll}
Y & Y & & & \\
& X & X & & \\
& & Y & Y & \\
& & & & X
\end{array}\right.\right]
$$

$$
\left\lvert\, \begin{array}{lllll}
X & X & & & \\
& Y & Y & & \\
& & & X & X \\
& & & Z & Z \\
X & Z & Z & Y & Z
\end{array}\right.
$$

Doubling operator: $X X, Y Y, Z Z$
Doubling-product: operators expressed as above.

Why these two are connected?

By removing $Y Y$ from left, and adding $Z Z$ to right, $Y Z Z Z X$ becomes $X Z Z Y Z$.

Connected operators through commutation relations

Connection between operators:
\rightarrow Adding/removing doubling operators ($X X, Y Y, Z Z$) at the left/right end

We then find...
Doubling-product : maybe nonzero coefficient Not doubling-product : zero coefficient!

Case of 3-support operators (revisit)

Coefficients which might be nonzero are

$$
\begin{gathered}
J_{X} q_{Y X Z}=J_{Y} q_{Z Y X}=J_{Z} q_{X Z Y} \\
=-J_{X} q_{Z X Y}=-J_{Y} q_{X Y Z}=-J_{Z} q_{Y Z X},
\end{gathered}
$$

Ex) $Y Z X$ can be expressed as

$$
\left\lvert\, \begin{array}{lll}
Y & Y & \\
& X & X \\
Y & Z & X
\end{array}\right.
$$

How coefficient of non-doublingproduct operator vanishes?

Two leftmost operators are the same! \rightarrow No operator make pair with $X X Z Y Z$
\rightarrow Coefficient should be zero!

Consequence of analysis on k+1-support operators

Analysis on $\mathrm{k}+1$-support operators in $[Q, H]$

- Restrict a candidate of k+1-support CQ in a specific form
\rightarrow Non-doubling-product operator has zero coefficient.
- Derive linear relation between coefficients
\rightarrow Coefficients of doubling-product operators are obviously in linear relation.

logic flow for general k

Analysis on $\mathrm{k}+1$-support operators in $[Q, H]$

- Restrict a candidate of $\mathrm{k}+1$-support CQ in a specific form
- Derive linear relation between coefficients

Analysis on k-support operators in $[\mathbf{Q}, \boldsymbol{H}]$

- Demonstrating coefficient of one of remaining k-support operators equal to zero.

Analysis on 3-support operators (revisit)

Consider $Y Z Y$ in $[Q, H]$.

Where can z magnetic field act?

$$
\begin{aligned}
& Z \quad Z \\
& \text { Y Y } \\
& \begin{array}{r}
Z Z \\
X X
\end{array} \\
& \text { Y Y } \\
& \begin{array}{c}
X X \\
Z \\
Z
\end{array} \\
& \text { Z Z } \\
& \text { Y Y } \\
& \begin{array}{llll}
Z & Z & & \\
& \begin{array}{|llll}
Y & Y & \\
& X & X & \\
& X & Y & Y
\end{array} \\
& & & Z
\end{array} \\
& \begin{array}{llllllllllllllll}
Z & X & X & Y & Z & Z & Y & Z & Z & X & X & X & Z & Z & X & Z
\end{array} \\
& \text { Z } \\
& Z X X Y Z \quad X \quad Z \\
& \begin{array}{llllllll}
\hline Z X X Y Z X
\end{array}
\end{aligned}
$$

Where can z magnetic field act?

any

Corresponding k-1-support + 2-support

$$
\begin{array}{|llllllll}
Z & Z & & & & & & \\
\left\lvert\, \begin{array}{|llllllll}
Y & Y & & & & & \\
& & Z & Z & & & & \\
& & & X & X & & & \\
& & & & Y & Y & & \\
& & & & & X & X & \\
& & & & & Z & Z \\
Z & X & X & Y & Z & Z & Y & Z \\
& & & & & & Z & \\
\hline Z & X & X & Y & Z & Z & X & Z
\end{array}\right.
\end{array}
$$

$$
Y Y
$$

$$
Z \quad Z
$$

$$
X \quad X
$$

$$
Y Y
$$

$$
X \quad X
$$

$$
\frac{Z}{Z} \quad Z
$$

$$
\begin{array}{lllllll}
Y & X & Y & Z & Z & X & Z
\end{array}
$$

$$
Z \quad Z
$$

$$
\overline{Z X X Y Z}
$$

Corresponding k-1-support + 2-support

$$
\begin{aligned}
& 2 Z \\
& \text { Y Y } \\
& \text { Z Z } \\
& X \quad X \\
& \text { Y Y } \\
& X \quad X \\
& Z \quad Z \\
& \begin{array}{|llllllll}
\hline Z & Z & & & & & \\
& Y & Y & & & & \\
& & Z & Z & & & \\
& & & X & X & & \\
& & & & Y & Y & \\
& & & & & X & X \\
\hline & & & & & Z
\end{array} \\
& Z \quad X \quad X \quad Y \quad Z \quad Z \quad Y \quad Z \\
& Z X X Y Z \quad Z \quad Y \\
& Z \quad Z \\
& Z X X Y Z \quad Z \quad Z \\
& \begin{array}{llllllll}
\hline Z X X Y Z
\end{array}
\end{aligned}
$$

Analysis on 3-support operators (revisit)

Some 3-support operators are generated by 3 types of commutators in $[Q, H]$.

	X	Y	Z							
	Z									
-2	Y	Y	Z	\quad						
:---	:---	:---	:---	:---	:---					

3-support in Q 1-support in H

k-support in Q
1-support in H

	Y	X	
		Z	Z
-2	Y	Y	Z

2-support in Q
2-support in H
k-1-support in Q
2-support in H
k-support operator generated by one type of k-1-support + 2-support
If left/right end of two operators are the same, 2support operator in H cannot act (ex: $k=6$).

$$
\begin{aligned}
& \text { Z Z } \\
& X \quad X \\
& \text { Y Y } \\
& \text { Z Z } \\
& X \quad X \\
& Z \quad Y \quad Z \quad X \quad Y \quad X \\
& \\
& \text { Z Z } \\
& X \quad X \\
& \text { Y Y } \\
& \text { Z Z } \\
& \text { Y Y } \\
& Z \quad Y \quad X \quad X \quad Y \\
& \begin{array}{ll}
& \\
\hline Z \quad Y \quad X \quad X \\
\hline X X
\end{array}
\end{aligned}
$$

k-support operator generated by one

 type of k-1-support + 2-supportIf left/right end of two operators are the same, 2support operator in H cannot act (ex: $k=6$).

$$
\begin{array}{ccccccccccc}
Z & Z & & & & & & & & & \\
& X & X & & & & & & \\
& & & & Y & & & & & & \\
& & & & & & & & \\
& & & Z & Z & & & & \\
& & & & X & X & & & & & \\
\\
Z & Y & Z & X & Y & X & & ? & ? & ? & ? \\
& & & & Z & & ? & \\
\hline Z & Y & Z & X & X & X \\
& & & & Y & Z & X & X & X \\
\hline
\end{array}
$$

k-support operator generated by one

 type of k-1-support + 2-supportIf left/right end of two operators are the same, 2support operator in H cannot act (ex: $k=6$).

Only single commutation generates this operator if

- Ordering XX (or YY), ZZ from left/right end
$Z \quad Y \quad X \quad Y \quad X \quad$ - z act at left/rightmost or next to left/rightmost.

Case of 3-support operators (revisit)

$$
\begin{aligned}
& h\left(q_{X Y Z}+q_{Y X Z}\right)+\quad J_{Z} q_{X Y}=0 \\
& h\left(q_{Y Z X}+q_{X Z Y}\right)-J_{Y}\left(q_{Y X}+q_{X Y}\right)=0 \\
& h\left(q_{X Y Z}+q_{Y X Z}\right)+J_{Z q_{Y X}}=0
\end{aligned}
$$

Case of 3-support operators (revisit)

k-support k-1-support

$$
\begin{aligned}
h\left(q_{X Y Z}+q_{Y X Z}\right)+ & J_{Z q_{X Y}}
\end{aligned}=0
$$

Case of 3-support operators (revisit)

k-support k-1-support

$$
\begin{array}{ll}
h\left(q_{X Y Z}+q_{Y X Z}\right)+ & \sqrt{q_{X Y}} \\
h\left(q_{Y Z X}+q_{X Z Y}\right)-J_{Y}\left(q_{Y X}+q_{X Y}\right) & =0 \\
h\left(q_{X Y Z}+q_{Y X Z}\right)+J_{Z} q_{Y X} & =0
\end{array}
$$

Case of 3-support operators (revisit)

k-support k-1-support

$$
\begin{aligned}
& h\left(q_{X Y Z}+q_{Y X Z}\right)+ \sqrt{q_{X Y}} \\
& h\left(q_{Y Z X}+q_{X Z Y}\right)-J_{Y} \\
& h\left(q_{X Y Z}+q_{Y X Z}\right)+J_{2} q_{Y X}=0 \\
&\left.q_{X Y Y}\right)=0 \\
&=0
\end{aligned}
$$

Case of 3-support operators (revisit)

k-support k-1-support

$$
\begin{aligned}
& h\left(q_{X Y Z}+q_{Y X Z}\right)+ \sqrt{q_{X Y}} \\
& h\left(q_{Y Z X}+q_{X Z Y}\right)-J_{Y} \\
& h\left(q_{X Y Z}+q_{Y X Z}\right)+J_{Z} q_{Y X} \\
&\left.q_{X X Y}\right)=0 \\
&=0
\end{aligned}
$$

Same terms are canceled!

What we seek for case of k-support

k-support k-1-support

Same terms are canceled!

The sequence

${ }_{Z}^{\uparrow} \overline{Y Z X Y} \cdots \overline{Y X Z X Y}$	$\bar{X} \uparrow \bar{Z} \overline{Z X Y} \cdots \overline{Y X Z X Y}$	$\overline{\mid} \overline{Y Z X Y} \cdots \overline{Y X Z X}+\bar{Y}$	
$\uparrow_{Z}^{\uparrow Y Z X Y} \cdots \overline{Y X Z X}$	$\overline{Y X} \uparrow \overline{Z X Y} \cdots \overline{Y X Z X}$	$\stackrel{Z}{\overline{X Y Z X Y} \cdots \overline{Y X Z}} \stackrel{\leftarrow}{+}$	$\bar{Y} \overrightarrow{+} \bar{X}^{Z} \mid \overline{Z X Y} \cdots \overline{Y X Z X}$
$\uparrow_{Z} \overline{Y X Y Z X Y} \cdots \overline{Y X Z}$	$\overline{X Y X} \uparrow_{Z} \overline{Z X Y} \cdots \overline{Y X Z}$	${ }^{Z} \overline{Y X Y Z X Y} \cdots \overline{Y X}+\bar{Z}$	$\bar{X} \overrightarrow{+} \overline{Y X}^{Z} \mid \overline{Z X Y} \cdots \overline{Y X Z}$
$\bar{Z} \uparrow_{Z}^{\overline{Y Z Y Z X Y} \cdots \overline{Y X}}$	$\overline{Z X Y X} \uparrow_{Z} \overline{Z X Y} \cdots \overline{Y X}$	$\bar{Z} \overline{\mid}^{\bar{Y} Z Y Z X Y} \cdots \bar{Y} \overleftarrow{+}$	$\left.\bar{Z} \overrightarrow{+} \overline{X Y X}\right\|^{Z} \overline{Z X Y} \cdots \overline{Y X}$
:			
$\overline{X Y} \cdots \overline{Y X Z} \uparrow_{Z} \overline{Y X Y Z}$	$\overline{X Y} \cdots \overline{Y X Z X Y X} \uparrow_{Z} \bar{Z}$	$\left.\overline{X Y} \cdots \overline{Y X Z}\right\|^{Z} \overline{Y X Y} \overleftarrow{+}$	$\left.\bar{X} \overrightarrow{+} \bar{Y} \cdots \overline{Y X Z X Y X}\right\|^{Z} \bar{Z}$
$\overline{Z X Y} \cdots \overline{Y X Z} \uparrow_{Z} \overline{Y X Y}$	$\overline{Z X Y} \cdots \overline{Y X Z X Y X} \uparrow_{Z}$	$\left.\overline{Z X Y} \cdots \overline{Y X Z}\right\|^{Z} \overline{Y X} \overleftarrow{+} \bar{Y}$	$\bar{Z} \overrightarrow{+} \overline{X Y} \cdots \overline{Y X Z X Y X}{ }^{Z}$
$\overline{Y Z X Y} \cdots \overline{Y X Z} \uparrow_{Z} \overline{Y X}$	$\overline{Y Z X Y} \cdots \overline{Y X Z X Y}{ }_{Z}$	$\overline{Y Z X Y} \cdots \overline{Y X Z} \bar{Y}^{Z} \overleftarrow{+} \bar{X}$	$\bar{Y} \overrightarrow{+} \overline{Z X Y} \cdots \overline{Y X Z X Y}^{Z}{ }^{\text {a }}$
$\overline{X Y Z X Y} \cdots \overline{Y X Z} \uparrow \bar{Y}$	$\overline{X Y Z X Y} \cdots \overline{Y X Z X}{ }_{Z}$		$\bar{X} \overrightarrow{+} \overline{Y Z X Y} \cdots \overline{Y X Z X}{ }^{Z}$

New symbols

\bar{X} : Doubling operator $X X$ (similar to $Y Y, Z Z$) If ordered, we take one-site shift.
${ }_{z}^{\uparrow}$: Commutation with k-support operator. Commutation with z magnetic field

Z
: Using when construct k-1-support operator Multiply Z at this position
$\overrightarrow{+}$: Commutation relation at this edge.

Examples

$$
\begin{array}{cccccc}
Z & Z & & & & \\
& X & X & & & \\
& & Y & Y & & \\
& & & Z & Z & \\
& & & & X & X \\
Z & Y & Z & X & Y & X
\end{array}
$$

$$
\overline{Z X Y Z X}
$$

Examples

$$
\begin{array}{ccccccc}
Z & Z & & & & \\
& & X & X & & & \\
& & & Y & Y & & \\
& & & Z & Z & \\
& & & & X & X \\
Z & Y & Z & X & Y & X \\
& & & & Z & \\
\hline Z & Y & Z & X & X & X
\end{array}
$$

$$
X \quad X
$$

$$
Y Y
$$

$$
Z \quad Z
$$

$$
X \quad X
$$

$$
Z
$$

$$
\begin{array}{lllll}
X & Z & X & X & X
\end{array}
$$

$$
\left.\overline{X Y Z}\right|^{Z} \bar{X}
$$

$$
\overline{Z X Y Z} \uparrow_{Z} \bar{X}
$$

Examples

$$
\begin{array}{ccccccc}
Z & Z & & & & \\
& & X & X & & & \\
& & & Y & Y & & \\
& & & Z & Z & \\
& & & & X & X \\
Z & Y & Z & X & Y & X \\
& & & & Z & \\
\hline Z & Y & Z & X & X & X
\end{array}
$$

$$
\overline{Z X Y Z} \uparrow_{Z} \bar{X}
$$

X X

$$
Y Y
$$

$$
Z \quad Z
$$

$$
X \quad X
$$

$$
Z
$$

$$
X \quad Z \quad X \quad X \quad X
$$

$$
\begin{array}{llllll}
Z & Z & & & \\
\hline Z & Y & Z & X & X & X
\end{array}
$$

$$
\bar{Z} \overrightarrow{+} \overline{X Y Z}{ }^{Z} \bar{X}
$$

Structure

$$
\begin{aligned}
& \text { Y Y } \\
& Z \quad Z \\
& \text { Y X Y Z } \cdots \\
& \text { Z } \\
& X X Y Z \cdots
\end{aligned}
$$

Structure

Since k-1-support operators are determined automatically, we hereafter omit them.

${\underset{Z}{\uparrow} \overline{Y Z X Y} \cdots \overline{Y X Z X Y}}^{1}$	$\bar{X} \uparrow{ }_{Z}^{\overline{Z X Y} \cdots \overline{Y X Z X Y}}$	$\sqrt{\bar{Y}} \overline{Y X Y Y} \cdots \overline{Y X Z X}+\bar{Y}$	
${\underset{Z}{\uparrow} \overline{X Y Z X Y} \cdots \overline{Y X Z X}}^{1}$	$\overline{Y X} \uparrow \overline{Z X Y} \cdots \overline{Y X Z X}$	${ }_{1}^{Z} \overline{X Y Z X Y} \cdots \overline{Y X Z}+\bar{X}$	$\bar{Y}+\bar{X} \bar{Z}^{\overline{Z X Y}} \cdots \overline{Y X Z X}$
${\underset{Z}{\uparrow} \overline{Y X Y Z X Y} \cdots \overline{Y X Z}}^{\text {a }}$	$\overline{X Y X} \uparrow \overline{Z X Y} \cdots \overline{Y X Z}$	${ }_{\mid}^{Z} \overline{Y X Y Z X Y} \cdots \overline{Y X}{ }^{\dagger} \bar{Z}$	$\left.\bar{X} \overrightarrow{+} \overrightarrow{Y X}\right\|^{Z} \overline{Z X Y} \cdots \overline{Y X Z}$
$\bar{Z} \uparrow{ }_{Z} \overline{\overline{Y Z Y Z X Y}} \cdots \overline{\overline{Y X}}$	$\overline{Z X Y X} \uparrow \overline{Z X Y} \cdots \overline{Y X}$	$\left.\bar{Z}\right\|^{\bar{Y} Z Y Z X Y} \cdots \bar{Y}+\bar{X}$	$\left.\bar{Z} \overrightarrow{+} \overline{X Y X}\right\|^{Z} \overline{Z X Y} \cdots \overline{Y X}$
	(
$\overline{X Y} \cdots \overline{Y X Z} \uparrow \underset{Z}{\overline{Y X Y Z}}$	$\overline{X Y} \cdots \overline{Y X Z X Y X}{ }_{Z} \bar{Z}$	$\left.\overline{X Y} \cdots \overline{Y X Z}\right\|^{Z} \overline{Y X Y}{ }^{\text {a }} \bar{Z}$	$\bar{X} \overrightarrow{+} \bar{Y} \cdots \overline{Y X Z X Y X}{ }^{T} \bar{Z}$
$\overline{Z X Y} \cdots \overline{Y X Z} \uparrow_{Z} \overline{\overline{Y X Y}}$		$\overline{Z X Y} \cdots \overline{Y X Z}{ }^{\bar{Y}} \bar{Y}+\bar{Y}$	$\bar{Z} \overrightarrow{+} \overline{X Y} \cdots \overline{Y X Z X Y X}{ }^{2}$
$\overline{Y Z X Y} \cdots \overline{Y X Z}{\underset{Z}{Y X}}^{\overline{Y X}}$		$\left.\overline{Y Z X Y} \cdots \overline{Y X Z}\right\|^{\bar{Y}} \stackrel{\square}{+}$	$\bar{Y} \overrightarrow{+} \overline{Z X Y} \cdots \overline{Y X Z X Y}{ }^{Z}$
$\overline{X Y Z X Y} \cdots \overline{Y X Z} \uparrow \bar{Y}$	$\overline{X Y Z X Y} \cdots \overline{Y X Z X} \uparrow$		$\bar{X} \overrightarrow{+} \overline{Y Z X Y} \cdots \overline{Y X Z X}{ }^{2}$

$Y Z Z X \cdots$

| Z | |
| :--- | :--- | :--- | :--- |
| $X \quad Z \quad Z \quad X \cdots$ | |

$Z X Z Z X \cdots$
$\frac{Z}{Z Y Z Z X}$

$Z Y Z Z Y \cdots$ | Z | |
| :---: | :---: |
| $Z Y Z \quad X \cdots$ | |

$$
\begin{array}{cccccc}
\hline Z & Z & & & & \\
\hline & Y & Y & & & \\
& & X & X & & \\
& & & Y & Y & \\
& & & & Z & Z \\
& & & & \ddots & \\
Z & X & Z & Z & X & \cdots \\
& Z & & & & \\
\hline Z & Y & Z & Z & X & \cdots
\end{array}
$$

- Inserting alternate $X X$, $Y Y$ does not convey the leftmost Z.
- Inserting $Z Z$ triggers to move Z to right.

${ }_{Z}^{\uparrow} \overline{Y Z X Y} \cdots \overline{Y X Z X Y}$	$\bar{X} \uparrow \bar{Z} \overline{Z X Y} \cdots \overline{Y X Z X Y}$	$\sqrt{\bar{Y} Z X Y} \cdots \overline{Y X Z X}+\bar{Y}$	
${ }_{Z}^{\uparrow} \overline{X Y Z X Y} \cdots \overline{Y X Z X}$	$\overline{\overline{Y X}} \uparrow \underset{Z}{\overline{Z X Y} \cdots \overline{Y X Z X}}$	${ }^{Z} \overline{X Y Z X Y} \cdots \overline{Y X Z}+\bar{X}$	$\bar{Y} \overrightarrow{+} \bar{X} \mid \overline{Z X Y} \cdots \overline{Y X Z X}$
	$\overline{X Y X} \uparrow \bar{Z} \overline{Z X Y} \cdots \overline{Y X Z}$	${ }_{\mid}^{Z} \overline{Y X Y Z X Y} \cdots \overline{Y X}+\bar{Z}$	$\left.\bar{X} \overrightarrow{+} \overline{Y X}\right\|^{Z} \overline{Z X Y} \cdots \overline{Y X Z}$
$\underbrace{\bar{Z} \uparrow}{ }_{Z}^{\overline{Y Z Y Z X Y} \cdots \overline{Y X}}$	$\overline{\overline{Z X Y X}} \underset{Z}{\overline{Z X Y} \cdots \overline{Y X}}$	$\bar{Z} \mid \bar{Y} \overline{Y Z Y Z X Y} \cdots \bar{Y}+\bar{X}$	$\left.\bar{Z} \overrightarrow{+} \overline{X Y X}\right\|^{Z} \overline{Z X Y} \cdots \overline{Y X}$
!	(
$\overline{X Y} \cdots \overline{Y X Z} \uparrow \bar{Z} \overline{Y X Y Z}$	$\overline{X Y} \cdots \overline{Y X Z X Y X}{ }_{Z} \bar{Z}$	$\left.\overline{X Y} \cdots \overline{Y X Z}\right\|^{Z} \overline{Y X Y} \overleftarrow{ }$	$\left.\bar{X} \overrightarrow{+} \bar{Y} \cdots \overline{Y X Z X Y X}\right\|^{Z} \bar{Z}$
$\overline{Z X Y} \cdots \overline{Y X Z} \uparrow \bar{Z} \overline{Y X Y}$	$\overline{Z X Y} \cdots \overline{Y X Z X Y X}{ }_{Z}^{\uparrow}$	$\left.\overline{Z X Y} \cdots \overline{Y X Z}\right\|^{Z} \overline{Y X}+\bar{Y}$	$\bar{Z} \overrightarrow{+} \overline{X Y} \cdots \overline{Y X Z X Y X}{ }^{Z}$
$\overline{Y Z X Y} \cdots \overline{Y X Z}{\underset{Z}{\top} \overline{Y X}}$		$\left.\overline{\overline{Y Z X Y}} \cdots \overline{Y X Z}\right\|^{\bar{Y}} \stackrel{\bar{X}}{ }$	$\bar{Y} \overrightarrow{+} \overline{Z X Y} \cdots \overline{Y X Z X Y}{ }^{Z}$
$\overline{X Y Z X Y} \cdots \overline{Y X Z}{\underset{Z}{\bar{Y}}}_{\bar{Y}}$	$\overline{X Y Z X Y} \cdots \overline{Y X Z X}{ }^{\uparrow}$		$\bar{X} \overrightarrow{+} \overline{Y Z X Y} \cdots \overline{Y X Z X}{ }^{Z}$

z magnetic field is moved to the right end!

Final result (k-support operator)

$$
h\left(\frac{J_{X}}{J_{Y}}-1\right)(k+2) q_{Y X Z Z \cdots Z Y Y Z}=0
$$

Unless $h=0$ (XYZ model) or $J_{X}=J_{Y}$ (XXZ model with a z-magnetic field), this coefficient is zero!
\rightarrow Absence of k-support conserved quantity!
($k \leq L / 2$)

Outline

- Background
- Proof (case of 3-support)
- Proof (general case)
- Extension

Background structure

The term with largest contiguous support in Hamiltonian is important!

$$
H=\sum_{i} \frac{J_{x} S_{i}^{x} S_{i+1}^{x}+J_{y} S_{i}^{y} S_{i+1}^{y}+J_{z} S_{i}^{z} S_{i+1}^{z}}{2 \text { sites }}+\frac{h S_{i}^{z}}{1 \text { site }}
$$

They determine the basic form of possible LCQ.

How the form of LCQ determined?

$$
H=\sum_{i} J_{x} \underbrace{S_{i}^{x} S_{i+1}^{x}}_{\uparrow}+J_{\gamma} \underbrace{S_{i}^{y} S_{i+1}^{y}}_{\nearrow}+J_{2} \underbrace{S_{i}^{z} S_{i+1}^{z}}_{i}+h S_{i}^{z}
$$

Shift products of these three make the form of possible LCQ (i.e., doubling-product).

Unfortunately, deriving inconsistency between above form and terms with smaller support is adhoc (model dependent way) at present...

Case of next-nearest Heisenberg chain

$$
H=\sum_{i} J_{1} \frac{S_{i} \cdot S_{i+1}}{2 \text { sites }}+J_{2} \frac{S_{i} \cdot S_{i+2}}{3 \text { sites }}
$$

Form of possible k-support LCQ is e.g.,

$$
\begin{array}{cccccccc}
X & \cdot & X & & & & \\
& & Y & \cdot & Y & & & \\
& & & X & \cdot & X & & \\
& & & & & Z & \cdot & Z \\
\hline X & \cdot & Z & \cdot & Z & \cdot & Y & \cdot
\end{array}
$$

Case of next-nearest Heisenberg chain

Form of possible k -1 support LCQ is e.g.,

$$
\begin{array}{cccccccc}
X & \cdot & X & & & & \\
& & Y & \cdot & Y & & & \\
& & & & Z & Z & & \\
& & & & & X & \cdot & X \\
\hline X & \cdot & Z & \cdot & X & Y & \cdot & X
\end{array}
$$

Considering k-2-support LCQ, we can derive inconsistency.

Future works

- This approach also applies Heisenberg model with staggered magnetic field.
- It is important to clarify general structure.
- Application to $S=1$ system appears a little difficult.

