Undecidability in quantum thermalization

Naoto Shiraishi (Gakushuin University)

N. Shiraishi and K. Matsumoto, arXiv:2012.13889/arXiv:2012.13890 (accepted to Nat. Comm)

Outline

Background

Review of theoretical computer science

Main result

- Setup and main claim
- Constructing classical Turing machine
- Constructing quantum system
- Extension

Outline

Background

Review of theoretical computer science

Main result

- Setup and main claim
- Constructing classical Turing machine
- Constructing quantum system
- Extension

Thermalization of macroscopic system

Thermalization

Non-equilibrium state goes to a unique equilibrium state (i.e., macroscopically indistinguishable).

It is true for a macro **pure quantum state**.

(M. Rigol, V. Dunjko & M. Olshanii, Nature 452, 854 (2008))

Why some systems thermalize while some others do not?

- Some systems do not thermalize! (relax to initial-state-dependent ensemble)
- Ex) Integrable system
 - Free Fermion system
 - Bethe anzats (e.g., XXZ chain)

0.2 1 relaxation dynamics
 1000 2000

(M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007))

Many researchers investigate what determines presence/absence of thermalization.

What is thermal?

Def: ThermalA state $|\psi\rangle$ is thermal w.r.t. A if $\langle \psi | A | \psi \rangle \simeq \mathrm{Tr}[\rho_{MC} A].$

Here, ρ_{MC} is the microcanonical distribution with energy $\langle \psi | H | \psi \rangle$.

(" \simeq " means that these two are equal in thermodynamic limit)

What is thermalization?

Def: Thermalization

A state $|\psi(0)\rangle$ thermalizes w.r.t. A if for almost all t, $|\psi(t)\rangle := e^{-iHt} |\psi(0)\rangle$ is thermal w.r.t. A. $\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} dt \, \chi(|\psi(t)\rangle) \text{ is thermal w. r. t. A}) \simeq 1$

Our target

We would like to decide whether an initial state $|\psi(0)\rangle$ with Hamiltonian *H* thermalizes or not w.r.t. an observable *A*.

We show that this is **undecidable**.

Outline

Background

Review of theoretical computer science

Main result

- Setup and main claim
- Constructing classical Turing machine
- Constructing quantum system
- Extension

Computation by Turing machine

Turing machine (TM)

(https://rpruim.github.io/m252/S19/from-class/models-of-computation/turing-machines.html)

Control unit reads a single cell (with 0/1/Blank) and

- change its own internal state
- rewrite the state of the cell
- move left/right one cell.

What is computation?

There exists **universal reversible TM (URTM)** which can emulate any possible TM.

URTM can emulate almost all our computation system (e.g., C++/Python).

Church-Turing thesis

We identify computational functions as those computable by URTM.

computable = what TM can compute

Decision problem

Def: Decision problem

Yes-No question of input.

Ex) -Primality test <u>Input</u>: A natural number N. <u>Problem</u>: Is N prime?

-Graph connectivity test <u>Input</u>: A graph. <u>Problem</u>: Are any two vertices connected?

Decidable/undecidable

<u>**Def: Decidable</u></u> : There exists a procedure (algorithm) which answers Yes/No correctly for any input. (Remark: it can take extremely long time)**</u>

- Ex) Proven in the form of theorem
 - Optimization (ex: traveling salesman problem)
 - Whether black/white wins in (generalized) Go.
 - Indefinite integration
 - First order real closed field (problem with four arithmetic operation and inequality in real number)

Decidable/undecidable

<u>**Def: Decidable</u></u> : There exists a procedure (algorithm) which answers Yes/No correctly for any input. (Remark: it can take extremely long time)</u>**

<u>**Def: Undecidable</u>** : There is no procedure/algorithm which decides Yes/No correctly for all inputs (Of course, there is no general theorem).</u>

(Related to Godel's incompleteness theorem)

Undecidability of halting problem

Def: Halting problem of Turing machine

Input: an input for a fixed URTM.

<u>Problem</u>: Does URTM with this input "halt at some time" or "not halt forever"?

This problem is undecidable (There is no procedure deciding whether this URTM halts or not).

Outline

Background

Review of theoretical computer science

Main result

- Setup and main claim
- Constructing classical Turing machine
- Constructing quantum system
- Extension

Our system

System : 1d system with periodic boundary condition Dimension of local Hilbert space : d (fixed)

Observable A	Given arbitrarily and fixed
Initial state $ \psi(0) angle$	Given arbitrarily and fixed
Hamiltonian H	Input

Complicated A, $|\psi(0)\rangle$, H make decision problem hard. However, we show that even with **simple** A, $|\psi(0)\rangle$, H, thermalization is undecidable.

Statement of decision problem

Arbitrarily given parameters Observable : spatial average of 1-body observable $A = \frac{1}{L} \sum_{i} a_{i} (a \text{ is arbitrary})$

Initial state : $|\phi_0\rangle \otimes |\phi_1\rangle \otimes |\phi_1\rangle \otimes \cdots \otimes |\phi_1\rangle$ $(\langle \phi_0 | \phi_1 \rangle = 0)$

 $\begin{array}{ll} \underline{Input}: -d^2 \times d^2 \ \text{local Hamiltonian } h \\ & \text{System Hamiltonian is } H = \sum_i h_{i,i+1} \\ & -\text{Target value } A^* \ \text{(In case of undecidability of relaxation.)} \end{array}$

Statement of decision problem

Decision problem with promise

Decide whether the difference between

- \overline{A} (long time average of A)
- a given value A^*

is (1) less than ϵ_1 , or (2) larger than ϵ_2 (> ϵ_1) in the thermodynamic limit.

It is easy to set A^* to the equilibrium value A_{eq} , which is undecidability of thermalization.

Proof idea: Reduction

<u>Proof sketch of undecidability of thermalization</u> We homologize dynamics of the system to the halting problem of Turing machine (TM) as

not halt
$$\rightarrow$$
 not thermalize
halt \rightarrow thermalize

Precisely, we prove that thermalization phenomena is computationally universal.

memory tape

Strategy

- We first construct a proper classical TM which has different value of A between halting and non-halting cases.
- 2. We **emulate** this classical system by quantum many-body systems.

Outline

Background

Review of theoretical computer science

Main result

- Setup and main claim
- Constructing classical Turing machine
- Constructing quantum system
- Extension

Structure of states of classical TM

There are two types of cells:

<u>M-cells</u>: - storing the input code for URTM - a working space of URTM. M-cell consists of three layers.

<u>A-cells</u>: - change the value of A between the case of halting and non-halting.

Three Turing machines, TM1 and TM2 (in M-cells), and TM3 (in A-cells) run in these cells.

State of total system (with computational basis state)

When TM moves, the cells might be swapped. Otherwise, the type of cells are kept.

Structure of M-cell

M-cell consists of 3 layers:

Layer 1 : emulate classical URTM (input x)

possess information of input bit sequence **x** for URTM

Whole dynamics (forward direction)

TM1 decodes input **x** from layers 2,3.

TM2 (URTM) runs with input **x**

Step 1: How to decode the input **x**

input x with 01 bit \leftrightarrow real number β in decimal We set relative frequency of 1 in layer 2 as β :

TM1 estimates the **relative frequency of 1** in layer 2, and output the result to layer 1. first layer 1. 0000...

Layer 3 determines how many bits TM1 should read and how many digits TM1 should output.

Step 2: Before halting

TM2 (URTM) runs with input **x**.

If TM2 steps across the periodic boundary, then TM2 stops (We set the *L*-th cell as "wall" and TM2 stops when it hits the wall).

In case of non-halting, TM2 must hit wall at some time.

Step 3: flipping

(When all A-cells are flipped, TM3 stops (relaxation), or just spends time (thermalization))

Outline

Background

Review of theoretical computer science

Main result

- Setup and main claim
- Constructing classical Turing machine
- Constructing quantum system
- Extension

Hamiltonian is input \leftrightarrow state is input

<u>Original problem</u> State is fixed at $|\phi_0\rangle \otimes |\phi_1\rangle \otimes |\phi_1\rangle \otimes \cdots \otimes |\phi_1\rangle$. Local Hamiltonian is input.

1-site local unitary transformation

Modified problem

Local Hamiltonian is fixed at proper one. State $|\psi_0\rangle \otimes |\psi_1\rangle \otimes |\psi_1\rangle \otimes \cdots \otimes |\psi_1\rangle$ is input.

Structure of Hamiltonian

<u>Basic structure</u>: Feynman-Kitaev Hamiltonian (without clock)

Dynamics of classical TM

Quantum Hamiltonian

Example of Feynman-Kitaev type Hamiltonian

Quantum Hamiltonian

Local Hamiltonian should have $|0q_4\rangle\langle q_20| + c.c.$ (Total Hamiltonian has its shift-sum.)

- This Hamiltonian is **local** (nearest-neighbor).
- Only the vicinity of control unit can evolve.

Further example of Feynman-Kitaev Hamiltonian

Rule of classical machine

- Internal state is unique, denoted by q.
- If TM reads 0, then it moves right.
- If TM reads 1, then it stops.

 $|0q001\rangle = |x^1\rangle$

 $|00q01\rangle = |x^2\rangle$

 $|000q1\rangle = |x^3\rangle$

Structure of Hamiltonian: after solving the classical dynamics

Denoting *n*-th state of the TM by $|x^n\rangle$, we have effective description of Hamiltonian as $H = \sum |x^{n+1}\rangle \langle x^n| + c.c.$

All energy eigenstates are **solvable** because this Hamiltonian is same as oneparticle 1d lattice system with closed boundary condition.

Exact energy eigenstates

$$E_{j} = 2\cos\left(\frac{j\pi}{J+1}\right)$$
$$|E_{j}\rangle = \sqrt{\frac{2}{J+1}}\sum_{k=1}^{J}\sin\left(\frac{kj\pi}{J+2}\right)|\mathbf{x}^{k}\rangle \qquad (1 \le j \le J)$$

(J :number of steps before stopping the machine)

Remark: The quantumdynamics does not followclassical one directly.But, all states are in thesubspace spanned by $\{ |x^1 \rangle, ..., |x^J \rangle \}.$

Quantum state space when TM2 halts (one-particle 1d description)

Quantum superposition of dynamics

Until now, we have regarded the state of the system as a single computational basis state.

However, actually, the initial state is a **superposition** of computational basis states, and the dynamics of TMs are also superposition.

Example of superposition of dynamics

Rule of classical machine

- Internal state is unique, denoted by q.
- If TM reads 0, then it moves right.
- If TM reads 1, then it stops.

Expanding initial state

The initial state is $|\psi_0\rangle \otimes (|\psi_1\rangle)^{\otimes L} = |\psi_0\rangle \otimes (\sqrt{\alpha} |\text{A-cell}\rangle + \sqrt{1-\alpha} |\text{M-cell}\rangle)^{\otimes L}$ state of TMs

$$\begin{split} |\text{A-cell}\rangle &= |a_0\rangle \\ |\text{M-cell}\rangle &= |0\rangle \otimes (\sqrt{\beta} |1\rangle + \sqrt{1 - \beta} |0\rangle) \otimes (\sqrt{\gamma} |1\rangle + \sqrt{1 - \gamma} |0\rangle) \\ \text{Layer 1} \qquad \text{Layer 2} \qquad \text{Layer 3} \end{split}$$

We set $\alpha \simeq 1$ (i.e., **most cells are A-cells**).

Expanding Layer 2

$$(\sqrt{\beta} |1\rangle + \sqrt{1 - \beta} |0\rangle)^{\otimes L} = \sum_{n=0}^{\infty} c_{0\dots00} |00\dots0\rangle + c_{0\dots01} |0\dots01\rangle + \dots + c_{1\dots11} |1\dots11\rangle$$

$$2^{L} \text{ states}$$

Law of large numbers \rightarrow Almost all states with visible weight have 1 with frequency β .

 \rightarrow input code **x** is correctly decoded in almost all states!

(Similar argument holds for the type of cells and Layer 3)

Logic flow

In almost all computational basis states in the initial state $|\psi(0)\rangle$, input code **x** is successfully decoded (frequency of 1 is close to β).

Each computational basis initial state evolves separately, while in all cases its value of A becomes finite iff the URTM with input code **x** halts.

The initial state $|\psi(0)\rangle$ thermalizes w.r.t. A iff the URTM with input code **x** halts.

Outline

Background

Review of theoretical computer science

Main result

- Setup and main claim
- Constructing classical Turing machine
- Constructing quantum system
- Extension

Computational power of thermalization

Our result shows not only undecidability but also **computational universality** of thermalization.

Any computational task can be implemented by thermalization phenomena.

We show a (striking) example.

Striking example

Fact: There exists a (744-state) TM which halts if and only if Riemann hypothesis is false.

(C. Calude and E. Calude, Comp. Sys. 18, 267. (2009)/ A. Yedidia and S. Aaronson, arXiv:1605.04343/ S. Aaronson, <u>https://www.scottaaronson.com/papers/bb.pdf</u>)

There exists a 1d system which thermalizes if and only if **Riemann hypothesis is false**.

(Note: Step 1 (decoding) is unnecessary.)

Summary

- The presence/absence of thermalization in given systems is undecidable.
- This result is still valid for one-dimensional, shiftinvariant, nearest-neighbor systems.
- Our result also show that thermalization can compute any computational task, which elucidates connection between thermalization and various mathematical tasks.

(N. Shiraishi and K. Matsumoto, arXiv:2012.13889/arXiv:2012.13890)