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Motivation from macroscopic 
thermodynamics

𝑋𝑋,𝑌𝑌: equilibrium states

𝑋𝑋 𝑌𝑌
allowed operation

In conventional thermodynamics,

?
(adiabatic operation):𝑆𝑆 𝑋𝑋 ≤ 𝑆𝑆(𝑌𝑌)

(isothermal operation):𝐹𝐹 𝑋𝑋 ≥ 𝐹𝐹(𝑌𝑌)
is the necessary and sufficient condition.

(E. H.Lieb and J. Yngvason, Phys. Rep. 310, 1 (1999).)



Situation is completely different in 
microscopic case

In contrast, in microscopic cases various new 
constraints other than the second law emerge.

Ex) majorization, infinite inequalities…

Questions in quantum thermodynamics
• What is the necessary and sufficient condition 

(nec.&suff.) for state conversions?
• Does the second law become a unique criterion? 

(i.e., a single monotone)



Gibbs-preserving map
We restrict the class of allowed operations to a set of 
Gibbs-preserving maps (with a fixed temperature).

𝜌𝜌Gibbs
GPM

Gibbs-preserving map (GPM)
CPTP map satisfying 𝚲𝚲 𝝆𝝆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 = 𝝆𝝆𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮

𝜌𝜌Gibbs

GPM is a standard class of thermodynamic operations



Formulation in terms of 
resource theory

Free operation: 𝒪𝒪 (Gibbs-preserving map (GPM))
Free state: ℱ (Gibbs state 𝜌𝜌Gibbs)

For any Λ ∈ 𝒪𝒪 and 𝜌𝜌 ∈ ℱ, 𝚲𝚲 𝝆𝝆 ∈ 𝓕𝓕 is satisfied.
(i.e., a free state does not generate a non-free state)

Question:
For given 𝜌𝜌, 𝜌𝜌𝜌, what is the nec.&suff. condition for 
the existence of Λ ∈ 𝒪𝒪 satisfying Λ 𝜌𝜌 = 𝜌𝜌𝜌.



State conversion via GPM (classical)

In the classical case, the nec.&suff. condition for 
GPM is given by d-majorization.

(J. M. Renes, J. Math. Phys. 57, 122202 (2016))

Various proofs: 
D. Blackwell, Proc. Math. Statist. and Prob. 93 (1951), 
F. Veinott. Jr., Man. Sci. 19, 547 (1971), 
E. Ruch, R. Schranner, and T. H. Seligman, J. Chem. Phys. 69, 1 (1978). 
N. Shiraishi, J. Phys. A Math. Theor. 53 425301 (2020)



State conversion with catalyst

𝑋𝑋 ≃ 𝑌𝑌
GPM

𝑐𝑐 𝑐𝑐

We introduce a catalyst system, which does not 
change through the map but helps conversion.

We say that 𝑋𝑋 → 𝑌𝑌 is convertible with a catalyst if 
for any 𝜀𝜀 > 0 there exist proper Λ and 𝑐𝑐 s.t.
Λ 𝑋𝑋⊗ 𝑐𝑐 = 𝑌𝑌′ ⊗ 𝑐𝑐 with 𝑑𝑑 𝑌𝑌,𝑌𝑌′ < 𝜀𝜀



What happens with and without 
catalyst

without catalyst with catalyst
(F. Brandao, et al., PNAS 112, 3275 (2015)).

Hierarchical relation of Lorenz curves can be 
changed by catalyst.



Classical 𝛼𝛼-Renyi divergence
For two probability distributions 𝑝𝑝, 𝑞𝑞, the 𝛼𝛼-Renyi
divergence except 𝛼𝛼 = 0,1,∞ is defined as

𝑆𝑆𝛼𝛼(𝑝𝑝| 𝑞𝑞 : =
sgn(𝛼𝛼)
𝛼𝛼 − 1

ln �
𝑖𝑖

𝑝𝑝𝑖𝑖𝛼𝛼

𝑞𝑞𝑖𝑖𝛼𝛼−1

For 𝛼𝛼 = 0,1,∞, we define
𝑆𝑆0(𝑝𝑝| 𝑞𝑞 : = − ln ∑𝑖𝑖;𝑝𝑝𝑖𝑖>0 𝑞𝑞𝑖𝑖
𝑆𝑆1(𝑝𝑝| 𝑞𝑞 ≔ ∑𝑖𝑖 𝑝𝑝𝑖𝑖 ln 𝑝𝑝𝑖𝑖

𝑞𝑞𝑖𝑖

𝑆𝑆∞(𝑝𝑝| 𝑞𝑞 ≔ ln max
𝑖𝑖

𝑝𝑝𝑖𝑖
𝑞𝑞𝑖𝑖



State conversion via GPM with 
catalyst (classical)

Theorem: In classical case, the nec.&suff. condition 
for GPM with catalyst (with small error 𝜖𝜖) is given 
by infinite inequalities with 𝛼𝛼-Renyi divergence:

𝑭𝑭𝜶𝜶 𝒑𝒑 ≥ 𝑭𝑭𝜶𝜶(𝒑𝒑′) where 𝐹𝐹𝛼𝛼 𝑝𝑝 : = 𝑆𝑆𝛼𝛼(𝑝𝑝| 𝑝𝑝Gibbs
(F. Brandao, et al., PNAS 112, 3275 (2015))

(GPM: Λ 𝑝𝑝Gibbs ⊗ 𝑐𝑐Gibbs = 𝑝𝑝Gibbs ⊗ 𝑐𝑐Gibbs)

(Key idea: M. Klimesh, arXiv:0709.3680 (2007), S. Turgut, J. Phys. A. 40, 12185 (2007))

Proof idea: Constructing an elaborated catalyst state explicitly 
which satisfies d-majorization condition



State conversion with correlated
catalyst

𝑋𝑋 ≃ 𝑌𝑌
GPM

𝑐𝑐 𝑐𝑐

𝑋𝑋 → 𝑌𝑌 is convertible with a correlated catalyst if for 
any 𝜀𝜀 > 0 there exist proper Λ and 𝑐𝑐 s.t. Λ(

)
𝑋𝑋⊗

𝑐𝑐 = 𝜏𝜏 with 𝐓𝐓𝐓𝐓𝑺𝑺 𝝉𝝉 = 𝒄𝒄, 𝒅𝒅 𝒀𝒀,𝐓𝐓𝐓𝐓𝑪𝑪[𝝉𝝉] < 𝜺𝜺, and the 
correlation is arbitrarily small.



State conversion via GPM with 
catalyst (classical)

Theorem: In classical case, the nec.&suff. condition 
for GPM with correlated catalyst with small error 𝜖𝜖
is given by the single free energy with relative 
entropy (the second law!).

𝑭𝑭 𝒑𝒑 ≥ 𝑭𝑭(𝒑𝒑′) where 𝐹𝐹 𝑝𝑝 ≔ 𝑆𝑆(𝑝𝑝| 𝑝𝑝Gibbs

proof idea: construct highly elaborated catalyst and reduce to 
the case of (uncorrelated) catalyst

(M. P. Muller, Phys. Rev. X 8, 041051 (2018).)



Summarizing known results

Classical Quantum
GPM d-majorization No simple 

criterion
GPM with catalyst Infinite 

inequalities
𝐹𝐹𝛼𝛼 𝜌𝜌 ≥ 𝐹𝐹𝛼𝛼(𝜌𝜌 𝜌)

No simple 
criterion

GPM with 
correlated catalyst

The second law
𝐹𝐹 𝜌𝜌 ≥ 𝐹𝐹(𝜌𝜌′)

???



There is a conjecture
In the quantum case, it is conjectured that…

Conjecture
In the quantum case, the nec.&suff. condition to 
convert 𝜌𝜌 → 𝜌𝜌𝜌 by GPM with a correlated catalyst is 
the second law with quantum relative entropy 
(𝐹𝐹 𝜌𝜌 = 𝑆𝑆(𝜌𝜌||𝜌𝜌Gibbs)):

𝐹𝐹 𝜌𝜌 ≥ 𝐹𝐹(𝜌𝜌′)
(H. Wilming, R. Gallego, and J. Eisert, Entropy 19, 241 (2017). 
M. Lostaglio and M. P. Muller, Phys. Rev. Lett. 123, 020403 (2019))

Single thermodynamic potential!



We need new approach!
Classical Quantum

GPM d-majorization No simple 
criterion

GPM with catalyst Infinite 
inequalities
𝐹𝐹𝛼𝛼 𝜌𝜌 ≥ 𝐹𝐹𝛼𝛼(𝜌𝜌 𝜌)

No simple 
criterion

GPM with 
correlated catalyst

The second law
𝐹𝐹 𝜌𝜌 ≥ 𝐹𝐹(𝜌𝜌′)

???

used in proof

used in proof

We cannot follow the approach in classical cases.
Completely new approach is needed!



Outline

Quantum thermodynamics
background
main result (recovery of the second law)

Resource theory of asymmetry
background
main result (unbounded convertible power)

(N. Shiraishi and T. Sagawa, Phys. Rev. Lett. 126, 150502 (2021))

(R. Takagi and N. Shiraishi, arXiv:2106.12592)



Main result
Main result
In the quantum case, nec.&suff. condition to 
convert 𝜌𝜌 → 𝜌𝜌𝜌 by GPM with a correlated catalyst is 
the second law with quantum relative entropy 
(𝐹𝐹 𝜌𝜌 = 𝑆𝑆(𝜌𝜌||𝜌𝜌Gibbs)):

𝐹𝐹 𝜌𝜌 ≥ 𝐹𝐹(𝜌𝜌′)
(N. Shiraishi and T. Sagawa, Phys. Rev. Lett. 126, 150502 (2021))

The conjecture is solved in positive.
The second law is recovered in quantum 
microscopic systems.



Necessary part (easy part)
Let Λ 𝜌𝜌⊗ 𝑐𝑐 = 𝜏𝜏 with Tr𝑆𝑆 𝜏𝜏 = 𝑐𝑐.
Using the additivity, superadditivity, and 
monotonicity of relative entropy, we have

𝑆𝑆(𝜌𝜌| 𝜌𝜌Gibbs + 𝑆𝑆(𝑐𝑐||𝑐𝑐Gibbs)
= 𝑆𝑆(𝜌𝜌 ⊗ 𝑐𝑐| 𝜌𝜌Gibbs ⊗ 𝑐𝑐Gibbs
≥ 𝑆𝑆(𝜏𝜏| 𝜌𝜌Gibbs ⊗ 𝑐𝑐Gibbs
≥ 𝑆𝑆(Tr𝐶𝐶[𝜏𝜏]| 𝜌𝜌Gibbs + 𝑆𝑆(𝑐𝑐||𝑐𝑐Gibbs)

arbitrarily close to 𝜌𝜌𝜌



Three-step proof strategy of the 
sufficient part

1: Sufficient condition for state conversions
(measurement-preparation method)

2: Nec. and suff. Condition for asymptotic 
conversions

3: Reduction from asymptotic conversions to 
(correlated-)catalytic conversions

(Note: This proof technique is not only for q-thermo but 
for other resource theories)



Before step 1: 
quantum 𝛼𝛼-Renyi divergence

Renyi-0 divergence: 𝑆𝑆0(𝜌𝜌| 𝜎𝜎 ≔ − ln[Tr 𝑃𝑃𝜌𝜌𝜎𝜎 ]
(𝑃𝑃𝜌𝜌: projection onto the support of 𝜌𝜌)

Renyi-∞ divergence: 𝑆𝑆∞(𝜌𝜌| 𝜎𝜎 ≔ ln[min 𝜆𝜆 𝜌𝜌 ≤ 𝜆𝜆𝜎𝜎 ]

𝑆𝑆0(𝜌𝜌| 𝜎𝜎 (lowest distinguishability)

𝑆𝑆∞(𝜌𝜌| 𝜎𝜎 (highest distinguishability)

𝑆𝑆1(𝜌𝜌| 𝜎𝜎 (KL divergence (relative entropy))

≤
≤



Step 1: sufficient condition for 
state conversion

Theorem 1: There exists a GPM with Λ 𝜌𝜌 = 𝜌𝜌𝜌 if
𝑺𝑺𝟎𝟎(𝝆𝝆| 𝝆𝝆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 ≥ 𝑺𝑺∞(𝝆𝝆′||𝝆𝝆𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮)

𝑆𝑆0(𝜌𝜌| 𝜌𝜌Gibbs

𝑆𝑆∞(𝜌𝜌||𝜌𝜌Gibbs)

𝑆𝑆0(𝜌𝜌𝜌| 𝜌𝜌Gibbs

𝑆𝑆∞(𝜌𝜌′||𝜌𝜌Gibbs)

Intuitive picture
𝜌𝜌 is more distinguishable than 𝜌𝜌𝜌
from 𝜌𝜌Gibbs in any sense.
→ 𝜌𝜌 is convertible to 𝜌𝜌𝜌 via GPM

(P. Faist and R. Renner, Phys. Rev. X 8, 021011 (2018).)



Proof of Theorem 1:
Measurement-preparation method

i. Perform a measurement with {𝑃𝑃𝜌𝜌, 1 − 𝑃𝑃𝜌𝜌}.

ii. Prepare a quantum state as 𝑝𝑝
𝑞𝑞 → 𝑝𝑝𝜌𝜌′ + 𝑞𝑞𝑞𝑞 with

𝜌𝜌 →
1
0

, 𝜌𝜌Gibbs →
𝑘𝑘

1 − 𝑘𝑘
with 𝑘𝑘 = 𝑒𝑒−𝑆𝑆0 𝜌𝜌 |𝜌𝜌Gibbs

𝑞𝑞 =
𝜌𝜌Gibbs − 𝑘𝑘𝜌𝜌𝜌

1 − 𝑘𝑘
(𝑆𝑆0(𝜌𝜌| 𝜌𝜌Gibbs ≥ 𝑆𝑆∞(𝜌𝜌′||𝜌𝜌𝐺𝐺𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺) confirms that 𝑞𝑞 is positive-
semidefinite)



Before step 2: 𝜀𝜀-smoothing

𝜌𝜌

𝜎𝜎

ℬ𝜀𝜀(𝜌𝜌): 𝜀𝜀-neighborhoodDef: smoothed divergence
𝑆𝑆∞𝜀𝜀 (𝜌𝜌| 𝜎𝜎 = min

�𝜌𝜌∈ℬ𝜀𝜀 𝜌𝜌
𝑆𝑆∞( �𝜌𝜌||𝜎𝜎)

𝑆𝑆0𝜀𝜀(𝜌𝜌| 𝜎𝜎 = max
�𝜌𝜌∈ℬ𝜀𝜀 𝜌𝜌

𝑆𝑆0( �𝜌𝜌||𝜎𝜎)
�𝜌𝜌

𝑆𝑆∞𝜀𝜀 (𝜌𝜌| 𝜎𝜎

𝑆𝑆0(𝜌𝜌| 𝜎𝜎

𝑆𝑆∞(𝜌𝜌| 𝜎𝜎

𝑆𝑆0𝜀𝜀(𝜌𝜌| 𝜎𝜎

𝑆𝑆∞𝜀𝜀 (𝜌𝜌| 𝜎𝜎
slightly decrease

slightly increase

(Note: previous sufficient 
condition is still valid for 𝜀𝜀-
smoothed version)

𝑆𝑆∞(𝜌𝜌| 𝜎𝜎



Step 2: Convergence of 
𝛼𝛼-Renyi divergence

Using the quantum Stain’s lemma, we have

Theorem 2: For any 0 < 𝜀𝜀 < 1/2 and 0 ≤ 𝛼𝛼 ≤ ∞, 

𝐥𝐥𝐆𝐆𝐥𝐥
𝒏𝒏→∞

𝟏𝟏
𝒏𝒏
𝑺𝑺𝜶𝜶𝜺𝜺 (𝝆𝝆⊗𝒏𝒏| 𝝈𝝈⊗𝒏𝒏 = 𝑺𝑺𝟏𝟏(𝝆𝝆||𝝈𝝈)

(N. Datta, IEEE Trans. 55, 2816 (2009))

1
𝑛𝑛
𝑆𝑆∞𝜀𝜀 (𝜌𝜌⊗𝑛𝑛||𝜎𝜎⊗𝑛𝑛)

1
𝑛𝑛
𝑆𝑆0𝜀𝜀(𝜌𝜌⊗𝑛𝑛||𝜎𝜎⊗𝑛𝑛)

𝑛𝑛 = 1 𝑛𝑛 = ∞

𝑆𝑆1(𝜌𝜌||𝜎𝜎)



Combining Theorem 1 and 2

1
𝑛𝑛
𝑆𝑆0𝜀𝜀(𝜌𝜌⊗𝑛𝑛||𝜌𝜌Gibbs

⊗𝑛𝑛 )

𝑛𝑛 = N

𝑆𝑆1(𝜌𝜌| 𝜌𝜌Gibbs = 𝐹𝐹(𝜌𝜌)
1
𝑛𝑛
𝑆𝑆∞𝜀𝜀 (𝜌𝜌𝜌⊗𝑛𝑛||𝜌𝜌Gibbs

⊗𝑛𝑛 )

𝑆𝑆1(𝜌𝜌𝜌| 𝜌𝜌Gibbs = 𝐹𝐹(𝜌𝜌′)

From Theorem 1, there exists a GPM Λ with 𝚲𝚲 𝝆𝝆⊗𝑵𝑵 ≃ 𝝆𝝆′⊗𝑵𝑵

𝜌𝜌⊗𝑁𝑁 𝜌𝜌𝜌⊗𝑁𝑁

(with error 𝜀𝜀)
GPM Λ ≃

From Theorem 2, if 𝐹𝐹 𝜌𝜌 ≥ 𝐹𝐹(𝜌𝜌′), there exists 𝑁𝑁 satisfying 
1
N
𝑺𝑺∞𝜺𝜺 (𝝆𝝆′⊗𝑵𝑵| 𝝆𝝆𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮

⊗𝑵𝑵 < 𝟏𝟏
𝑵𝑵
𝑺𝑺𝟎𝟎𝜺𝜺(𝝆𝝆⊗𝑵𝑵||𝝆𝝆𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮

⊗𝑵𝑵 )



Step 3: From asymptotic to catalytic

S1

S2

S3

R 6 5 4 3 2 1

S4

S5

S6

classical mixture of 6 states with equal weights

catalyst

system

Ex) 𝑁𝑁 = 6
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Step 3: From multi-copy to catalytic
6 5 4 3 2 1



Step 3: From multi-copy to catalytic
6 5 4 3 2 1

Λ (GPM)



Step 3: From multi-copy to catalytic
6 5 4 3 2 1

Λ (GPM)

system ≃ 𝜌𝜌𝜌

catalyst = 𝑐𝑐



Remark 1: case with work storage

𝜌𝜌 ≃ 𝜌𝜌𝜌

GPM
𝑐𝑐 𝑐𝑐

We introduce a two-level system called work storage, 
which compensate the energy change. 

State is 
approximated but 
not correlated.

≃1
0



Conversion against free energy 
difference with the aid of work storage

Theorem
If 𝐹𝐹 𝜌𝜌 < 𝐹𝐹(𝜌𝜌′), for any 𝜀𝜀 > 0, there exist a 
catalyst, a work storage with 𝚫𝚫𝑬𝑬 = 𝑭𝑭 𝝆𝝆′ − 𝑭𝑭(𝝆𝝆), 
and a GPM Λ such that  

𝚲𝚲 𝝆𝝆⊗ 𝒄𝒄⊗ 𝟏𝟏 𝟏𝟏 ) = 𝝉𝝉⊗𝝎𝝎
with 

𝑑𝑑 TrC 𝜏𝜏 ,𝜌𝜌′ < 𝜀𝜀
Tr𝑆𝑆 𝜏𝜏 = 𝑐𝑐

𝑑𝑑 𝜔𝜔, 0 0 ) < 𝜀𝜀
(N. Shiraishi and T. Sagawa, Phys. Rev. Lett. 126, 150502 (2021))

(Remark: the case of work extraction is not shown at present)



Remark 2: Applications to other 
resource theories

This proof method applies other resource theories.

Sufficient condition for asymptotic conversion is 
also that for catalytic conversion (see Step 3).

Various applications of our proof method:
Entropy conjecture: (H. Wilming, Phys. Rev. Lett. 127, 260402 (2021))
Entanglement: (T. V. Kondra, et al., Phys. Rev. Lett. 127, 150503 (2021))
Teleportation: (P. Lipka-Bartosik and P. Skrzypczyk, PRL 127, 080502 (2021))

See N. Shiraishi and T. Sagawa, Phys. Rev. Lett. 126, 150502 (2021) and 
R. Takagi and N. Shiraishi, arXiv:2106.12592 for further discussion.

S1

S2

S3

R 6 5 4 3 2 1

S4

S5

S6
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Resource theory of asymmetry
Free operation: energy conserving operation
Free state: incoherent state w.r.t. energy eigenstates

symmetric = incoherent w.r.t. energy
asymmetric = coherent w.r.t. energy

We examine whether Λ:𝜌𝜌 → 𝜌𝜌𝜌 is possible with a 
symmetric map Λ (energy-conserving map).

(Note: we consider U(1) symmetry in this talk)



Physical motivation

𝜌𝜌 𝜌𝜌𝜌Energy conserving 
unitary

incohe
rent

All physical processes conserves energy
→Symmetry with energy basis naturally appears!

High coherence between energy eigenstates 
can be a resource.



Motivation from q-thermo
Def: 𝜌𝜌 → 𝜌𝜌𝜌 is convertible via Thermal operation (TO) if 
there exist an energy conserving unitary and an auxiliary 
system A with a state 𝜅𝜅Gibbs such that

TrA 𝑈𝑈 𝜌𝜌⊗ 𝜅𝜅Gibbs 𝑈𝑈† = 𝜌𝜌𝜌

𝜌𝜌 𝜌𝜌𝜌Energy conserving 
unitary

𝜅𝜅Gibbs

(Note: 𝜅𝜅𝐺𝐺𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 is an incoherent state)



Status of thermal operation
Classical case: GPM=TO

(M. Horodecki and J. Oppenheim, Nat. Comm. 4, 2059 (2013), 
N. Shiraishi, J. Phys. A Math. Theor. 53 425301 (2020))

Quantum case: GPM⊃TO and GPM≠TO
(P. Faist, J. Oppenheim, and R. Renner, New J. Phys. 17, 043003 (2015))

Symmetric map (TO) cannot create energy coherence.

𝐸𝐸1
1
2

(|𝐸𝐸1⟩ + 𝐸𝐸2 )×



Symmetric map with correlated 
catalyst

𝜌𝜌 ≃ 𝜌𝜌𝜌Energy conserving 
unitaryincohe

rent

𝜌𝜌 ≃ 𝜌𝜌𝜌
symmetric

𝑐𝑐 𝑐𝑐

𝑐𝑐 𝑐𝑐

=



No broadcasting theorem
Theorem: Let 𝜌𝜌 be an incoherent state, and Λ be a 
symmetric map. If Tr𝑆𝑆 Λ 𝜌𝜌 ⊗ 𝑐𝑐 = 𝑐𝑐, then 𝜌𝜌′ =
TrC[Λ 𝜌𝜌⊗ 𝑐𝑐 ] is an incoherent state.

(M. Lostaglio and M. P. Muller, Phys. Rev. Lett. 123, 020403 (2019),
I. Marvian and R. W. Spekkens, Phys. Rev. Lett. 123, 020404 (2019).)

𝜌𝜌 𝜌𝜌𝜌
symmetric

𝑐𝑐 𝑐𝑐

If 𝜌𝜌 is 
incoherent

𝜌𝜌𝜌 is also 
incoherent



No broadcasting theorem
Theorem: Let 𝜌𝜌 be an incoherent state, and Λ be a 
symmetric map. If Tr𝑆𝑆 Λ 𝜌𝜌 ⊗ 𝑐𝑐 = 𝑐𝑐, then 𝜌𝜌′ =
TrC[Λ 𝜌𝜌⊗ 𝑐𝑐 ] is an incoherent state.

(M. Lostaglio and M. P. Muller, Phys. Rev. Lett. 123, 020403 (2019),
I. Marvian and R. W. Spekkens, Phys. Rev. Lett. 123, 020404 (2019).)

𝜌𝜌 𝜌𝜌𝜌
symmetric

𝑐𝑐 𝑐𝑐

If 𝜌𝜌 is 
incoherent

𝜌𝜌𝜌 is also 
incoherent

In this case, a catalyst gives no advantage to 
symmetric maps.
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(R. Takagi and N. Shiraishi, arXiv:2106.12592)



Marginal catalytic operation

𝜌𝜌 ≃ 𝜌𝜌𝜌

𝑐𝑐1

Suppose that catalysts can correlate with each other 
(marginal catalytic operation).

𝑐𝑐2 𝑐𝑐1 𝑐𝑐2

We consider the power of symmetric maps with 
marginal catalysts.



Symmetric map with marginal 
catalyst is trivial.

Theorem: Any 𝜌𝜌 can be converted to any 𝜌𝜌𝜌 via a 
symmetric map with marginal catalysts.

Coherence gives no restriction!
(i.e, the resource theory of asymmetry (unspeakable coherence) 
with marginal catalyst is trivial.)

(R. Takagi and N. Shiraishi, arXiv:2106.12592)

incohe
rent

𝑐𝑐1 𝑐𝑐2 𝑐𝑐1 𝑐𝑐2

≃max. 
coherent



Remark: Most resource theories 
with marginal catalyst is not trivial

Theorem: If there exists a resource measure 𝑅𝑅(𝜌𝜌)
satisfying superadditivity and tensor-product 
additivity, then conversion 𝜌𝜌 → 𝜌𝜌𝜌 with marginal 
catalysts implies 𝑅𝑅 𝜌𝜌 ≥ 𝑅𝑅(𝜌𝜌′).

(R. Takagi and N. Shiraishi, arXiv:2106.12592)

Most resource theories (entanglement, 
thermodynamics, (speakable) coherence…) have 
such a measure, and hence do not become trivial 
even with marginal catalysts.



Key protocol for triviality

Let

For 0 < 𝑞𝑞 < 1, there exist a two-state catalyst Γ(𝑞𝑞)
and a symmetric map Λ such that

Tr𝐶𝐶 Λ Σ 𝑞𝑞 ⊗ Γ 𝑞𝑞 = Σ 𝑞𝑞′ ,
Tr𝑆𝑆 Λ Σ 𝑞𝑞 ⊗ Γ 𝑞𝑞 = Γ 𝑞𝑞

with 𝑞𝑞′ > 𝑞𝑞.

𝑞𝑞 = 0: incoherent
𝑞𝑞 = 1: maximally coherent

(F. Ding, X. Hu, and H. Fan, Phys. Rev. A 103, 022403 (2021))

C C



Step 1: from scratch to finite coherence

C

Ci
bCi

a

Incoherent state.
(We can discard this system finally)



Step 1: from scratch to finite coherence

C C C

Ci
bCi

a

Applying 
key protocol

Distributing 
coherence



Step 2: Amplifying coherence

C(1) C(2) C(n) C(1) C(2) C(n) C(1) C(2) C(n)

C(1) C(2) C(n)

Applying key protocol many times, 

we obtain a state arbitrarily 
close to the maximally 
coherent state.



Step 3: approximated Gaussian state

Product state of many maximally coherent states is 
close to the Gaussian state on a ladder energy level.

We can obtain many Gaussian 
states with arbitrary level 
spacing of ladder.



Step 4: emulating unitary operation

j*
ΔE1

ΔE1

ΔE2

ΔE2

1

2

Prepare Gaussian states with all level spacing in the 
system to absorb the energy change in the system.

desired 
state

(related to Y. Aharonov and L. Susskind, Phys. Rev. 155, 1428 (1967), 
S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007).)

discard



Symmetric map with correlated catalyst

(R. Takagi and N. Shiraishi, arXiv:2106.12592)

Conjecture (intuitive): If 𝜌𝜌 has nonzero coherence, 
𝜌𝜌 can be converted to any 𝜌𝜌𝜌 via a symmetric map 
with correlated catalyst.

In Step 1, correlation among catalysts is essential.

On the other hand, other steps might be realized 
in the case of correlated catalyst. 



Precise statement of conjecture
Let 𝐼𝐼(𝜌𝜌) be a set of pairs (𝑖𝑖, 𝑗𝑗) where 𝜌𝜌𝑖𝑖𝑖𝑖 ≠ 0.

Let 𝐽𝐽(𝜌𝜌) be a set of pairs (𝑖𝑖, 𝑗𝑗) such that 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖 can 
be written as a linear combination of integer 
multiple of energy difference in 𝐼𝐼(𝜌𝜌):

𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖 = �
𝑘𝑘,𝑙𝑙 ∈𝐼𝐼(𝜌𝜌)

𝑐𝑐𝑘𝑘𝑙𝑙 𝐸𝐸𝑘𝑘 − 𝐸𝐸𝑙𝑙 , 𝑐𝑐𝑘𝑘𝑙𝑙 ∈ ℤ

Conjecture: 
𝜌𝜌 is transformable to 𝜌𝜌𝜌 via energy conserving map 
with correlated catalyst if and only if 𝐼𝐼 𝜌𝜌′ ⊂ 𝐽𝐽(𝜌𝜌).



Remarks on conjecture 1

coherent

coherent
incoherent

If 1-2 and 2-3 have 
coherence, we can create 
coherence between 1-3 by 
correlated catalyst even if 
𝐸𝐸2 − 𝐸𝐸1 and 𝐸𝐸3 − 𝐸𝐸2 are 
irrational with each other.

1

2

3



Remarks on conjecture 2

coherent

incoherent
incoherent

If 𝐸𝐸2 − 𝐸𝐸1 = 𝑚𝑚(𝐸𝐸3 − 𝐸𝐸2) (𝑚𝑚: integer), coherence 
between 1-2 can create coherence between 2-3 
and 1-3.

coherent

coherent
coherent

1

2

3

1

2

3



Summary
• In small quantum systems, the nec.&suff. 

condition for conversion 𝜌𝜌 → 𝜌𝜌𝜌 via GPM with 
correlated catalyst is given by the second law:

𝑭𝑭 𝝆𝝆 ≥ 𝑭𝑭(𝝆𝝆′)

• The proof technique can be extended to other 
problems in resource theories.

• Resource theory of asymmetry with marginal 
catalysts is trivial.

END
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