The problem of thermalization in isolated quantum many-body systems

Naoto Shiraishi (University of Tokyo)

N. Shiraishi and T. Mori, Phys. Rev. Lett. 119, 030601 (2017)
T. Mori and N. Shiraishi, Phys. Rev. E 96, 022153 (2017)
N. Shiraishi, J. Stat. Mech. 083103 (2019)
N. Shiraishi and K. Matsumoto, Nat. Comm. 12, 5084 (2021)

Thermalization of macroscopic system

Thermalization

Non-equilibrium state goes to a unique equilibrium state (i.e., macroscopically indistinguishable).

It is true for a macro **pure quantum state**.

Experiment

(M. Rigol, V. Dunjko & M. Olshanii, Nature **452**, 854 (2008), M. Gring, et.al., Science 348, 207 (2015))

Why some systems thermalize while some others do not?

- Some systems **do not thermalize!** (relax to initial-state-dependent ensemble)
- Ex) Integrable system
 - Free Fermion system
 - Bethe anzats

Localized system

- Anderson localization
- Many body localization

Many researchers investigate what determines presence/absence of thermalization.

Outline

Part 1: General framework to violate ETH -Background

- -Construction of Hamiltonian
- -Dynamics

Part 2: Undecidability of thermalization -Main claim

- -Construction of classical TM
- -Quantum emulation

Outline

Part 1: General framework to violate ETH -Background

- -Construction of Hamiltonian
- -Dynamics

Part 2: Undecidability of thermalization -Main claim

- -Construction of classical TM
- -Quantum emulation

Candidate: Eigenstate thermalization hypothesis

Thermal (w.r.t A)

State $|\psi\rangle$ is thermal w.r.t. *A* if $\langle \psi | A | \psi \rangle \simeq \text{Tr}[A \rho_{\text{MC}}]$

Eigenstate thermalization hypothesis (ETH) All energy eigenstates are thermal $\langle E_n | A | E_n \rangle \simeq \operatorname{Tr}[A \rho_{MC}]$ (A: macro observable)

(J. von Neuman, Z. Phys. 57, 30 (1929), J. M. Deutsch, PRA 43, 2046 (1991), M. Srednicki, PRE 50, 888 (1994))

Known properties of ETH

- ETH is sufficient for thermalization.
- Many complex (non-integrable, non-localized) systems satisfy ETH.

L. F. Santos and M. Rigol, Phys. Rev. E 81, 036206 (2010).

R. Steinigeweg, J. Herbrych, and P. Prelovsek, Phys. Rev. E 87, 012118 (2013).

H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105 (2014).

W. Beugeling, R. Moessner, and M. Haque, Phys. Rev. E 89, 042112 (2014).

T. Yoshizawa, E. Iyoda, and T. Sagawa, Phys. Rev. Lett. 120, 200604 (2018).

All known counterexamples to ETH are only non-thermalizing systems.

- Integrable systems (with local conserved quantities)
- Localized systems

Beliefs on ETH

Outline

Part 1: General framework to violate ETH -Background

-Construction of Hamiltonian

-Dynamics

Part 2: Undecidability of thermalization -Main claim

- -Construction of classical TM
- -Quantum emulation

Example: S=1 spin chain

Consider **spin-1 chain** with p.b.c. with length *L*.

Projection operator:
$$P_i^z = egin{cases} 0: & S_i^z = \pm 1 \ 1: & S_i^z = 0 \end{bmatrix}$$

$$H_{\rm trial} = \sum_i P_i^z h_i P_i^z$$

 h_i : Arbitrary local Hamiltonian. Ex) $h_i = S_{i-1}^+ S_{i+1}^- + S_{i-1}^- S_{i+1}^+$

(NS and T. Mori, Phys. Rev. Lett. 119, 030601 (2017))

Role of projection operators

$$H_{\text{trial}} = \sum_i P_i^z h_i P_i^z$$

Let us consider the case that H_{trial} acts on $|\phi\rangle$.

Role of projection operators

$$H_{\text{trial}} = \sum_i P_i^z h_i P_i^z$$

Let us consider the case that H_{trial} acts on $|\phi\rangle$.

2^L eigenstates with zero energy

 $\mathcal{T}: 2^L$ states with all spins at ± 1

They are eigenstates of H_{trial} with zero energy! $(: |\psi\rangle \in \mathcal{T} \text{ satisfies } \mathbf{P}_i^{\mathbf{Z}} |\psi\rangle = \mathbf{0} \text{ for all } i$.

Resolving 2^{*L*} degeneracy

$$H = \sum_{i} P_i^z h_i P_i^z + H'$$

Confirming violation of ETH

Plot of $\langle E_n | \hat{O} | E_n \rangle / L$ versus E_n / L

Generalization: Method of embedding

 $\mathcal{T}: \textbf{target states} \text{ we want to embed}$ $P_i: \text{ local projection operators}$ $|\psi\rangle \in \mathcal{T} \Rightarrow P_i |\psi\rangle = 0$

Then, the Hamiltonian with arbitrary h_i $H = \sum_i P_i h_i P_i + H'$ has the **target states** T as its **eigenstates**. $(H': \text{satisfying } [H', P_i] = 0 \text{ for all } i$)

Any MPS (matrix-product state) can be target state! (ex: AKLT, dimer states, Schrodinger's cat...) (NS and T. Mori, Phys. Rev. Lett. 119, 030601 (2017))

Outline

Part 1: General framework to violate ETH -Background

-Construction of Hamiltonian -Dynamics

Part 2: Undecidability of thermalization -Main claim

-Construction of classical TM

-Quantum emulation

What type of initial state thermalizes?

- States with all spins ± 1 never thermalize. What about a state with a single spin 0?
- Single spin 0 is sufficient for thermalization!

Thermalization: schematic picture

Thermalization: schematic picture

Defects can spread among whole system!

Quench in macroscopic systems

Is initial state with zero defect preparable?

<u>Quench from ground state</u> $(T = 0) \rightarrow$ **Yes**

<u>Quench from thermal state $(T > 0) \rightarrow No!</u>$ (Zero-defect state realizes with very small prob.)</u>

Absolute zero temperature is unreachable. →physical quench inevitably contain defects.

(T. Mori and NS, Phys. Rev. E 96, 022153 (2017))

Thermalization without ETH

Quench from thermal state of different Hamiltonian.

Thermalization indeed occurs!

(T. Mori and NS, Phys. Rev. E 96, 022153 (2017))

Non-local conserved quantity matters to macroscopic physics

$$\rho_{GGE} \propto e^{-\beta_P \mathcal{P}H\mathcal{P} - \beta_Q \mathcal{Q}H\mathcal{Q} - \lambda \mathcal{Q}}$$

 $Q \coloneqq \prod_i (1 - P_i)$:**nonlocal** projection operator to \mathcal{T} $\mathcal{P} \coloneqq 1 - Q$

 $\beta_P, \beta_Q, \lambda$: depend on initial state (T. Mori and NS, Phys. Rev. E 96, 022153 (2017))

Quantum many-body scars

Experiment of Rydberg atoms

(H. Bernien, et al. Nature 551, 579 (2017))

Initial-state-dependent longlived oscillation (Quantum many-body scar) is observed.

Quantum many-body scar is a kind of embedded Hamiltonian

PXP model (effective Hamiltonian of scar system) is nonintegrable, but some eigenstates are nonthermal, which can be explicitly solvable. (C.-J. Lin and O. I. Motrunich, Phys. Rev. Lett. 122, 173401 (2019)).

(Mapped) PXP model is written as an **embedded Hamiltonian** which embeds **AKLT state**.

(NS, J. Stat. Mech. 083103 (2019)).

In fact, most of models of quantum many-body scars are also embedded Hamiltonians.

Outline

Part 1: General framework to violate ETH -Background

- -Construction of Hamiltonian
- -Dynamics

Part 2: Undecidability of thermalization -Main claim

-Construction of classical TM

-Quantum emulation

Question

ETH is not a general answer for thermalization.

What determines the presence/absence of thermalization?

To investigate this question, we employ a simple setup: 1d spin chain with *d* local states.

Statement of decision problem

Arbitrarily given parameters Observable : spatial average of 1-body observable $A = \frac{1}{L} \sum_{i} a_{i} (a \text{ is arbitrary})$

Initial state : $|\phi_0\rangle \otimes |\phi_1\rangle \otimes |\phi_1\rangle \otimes \cdots \otimes |\phi_1\rangle$ $(\langle \phi_0 | \phi_1 \rangle = 0)$

 $\begin{array}{ll} \underline{Input}: -d^2 \times d^2 \ \text{local Hamiltonian } h \\ & \text{System Hamiltonian is } H = \sum_i h_{i,i+1} \\ & -\text{Target value } A^* \ \text{(In case of undecidability of relaxation.)} \end{array}$

Statement of decision problem

Decision problem with promise

Decide whether the difference between

- \overline{A} (long time average of A: determined by H, $|\psi\rangle$, A)
- a given value A^{*}

is (1) less than ϵ_1 , or (2) larger than ϵ_2 (> ϵ_1) in the thermodynamic limit.

Main result:

undecidability of thermalization

<u>Theorem</u>: Given A, $|\psi(0)\rangle$ and fix. The presence or absence of thermalization is **undecidable**. (For given H, no procedure determines the presence/absence of thermalization.) (NS and K. Matsumoto, Nat. Comm. 12, 5084 (2021))

It is easy to set A^* to the equilibrium value A_{eq} , which is undecidability of thermalization.

Decidable/undecidable

<u>**Decidable</u></u> : There exists a procedure (algorithm) which answers Yes/No correctly for any input. (Remark: it can take extremely long time)</u>**

- Ex) Proven in the form of theorem
 - Optimization (ex: traveling salesman problem)
 - Whether black/white wins in (generalized) Go.
 - Indefinite integration
 - First order real closed field (problem with four arithmetic operation and inequality in real number)

Decidable/undecidable

<u>**Decidable</u></u> : There exists a procedure (algorithm) which answers Yes/No correctly for any input. (Remark: it can take extremely long time)</u>**

<u>Undecidable</u>: There is no procedure/algorithm which decides Yes/No correctly (Of course, there is no general theorem)

(Related to Godel's incompleteness theorem)

Undecidability of halting problem

Halting problem of Turing machine (TM)

Input: an input for a given universal TM.

<u>Problem</u>: Does universal TM with this input "halt at some time" or "not halt forever"?

(Universal TM: a computer which can compute any computational task)

This problem is undecidable (There is no procedure deciding whether this TM halts or not).

Most important lemma

<u>Lemma</u>: For any program of universal TM, there exists a corresponding Hamiltonian such that it thermalizes iff the TM with this program halts.

Since halting problem is undecidable, thermalization is also undecidable.

Strategy

- We first construct a proper classical TM which has different value of A between halting and non-halting of TM.
- 2. We **emulate** this classical system by quantum many-body systems. (Like Feynman-Kitaev construction)

Since 2 is a well known method, we mainly treat 1.

Outline

Part 1: General framework to violate ETH -Background

- -Construction of Hamiltonian
- -Dynamics

Part 2: Undecidability of thermalization -Main claim

-Construction of classical TM

-Quantum emulation

Structure and dynamics

Two-layer structure

- Layer 1 : Working space of universal TM
- <u>Layer 2</u>: Storing input code **x** of universal TM.

Dynamics

- 1. Decode input code **x** from Layer 2.
- 2. Universal TM runs with input code x.
- 3. Flip the value of observable A if and only if the universal TM halts.

Structure of classical TM (schematic)

Step 1: How to decode the input **x**

input x with 01 bit \leftrightarrow real number meta in decimal

classical : Set the probability of bit 1 as β . quantum : Align $\sqrt{\beta}|1\rangle + \sqrt{1-\beta}|0\rangle$.

(ex: If input code is x=1101,
$$\beta = 0.1011 = \frac{1}{2} + \frac{1}{8} + \frac{1}{16} = \frac{11}{16}$$
)

TM1 estimates the **relative frequency of 1** in layer 2, and output the result to layer 1.

Step 2: in case of non-halting

Universal TM runs with input x.

We set the *L*-th cell as "wall" at the first step. If TM2 steps across the periodic boundary (wall), then TM2 stops.

In case of non-halting, TM2 must hit wall at some time.

Step 3: flipping (in case of halting)

(When all A-cells are flipped, TM3 stops (relaxation), or just spends time (thermalization))

Outline

Part 1: General framework to violate ETH -Background

- -Construction of Hamiltonian
- -Dynamics

Part 2: Undecidability of thermalization -Main claim

-Construction of classical TM

-Quantum emulation

Feynman-Kitaev type Hamiltonian

Quantum Hamiltonian

Local Hamiltonian should have $|0q_4\rangle\langle q_20| + c.c.$ (Total Hamiltonian has its shift-sum.)

- This Hamiltonian is **local** (nearest-neighbor).
- Only the vicinity of control unit can evolve.

Dynamics in classical system = Eigenstate in quantum system

<u>Classical system</u> Dynamics of CA

<u>Quantum system</u> Single energy eigenstate

In case of halting...

Thermalization is Turing complete

Is our result negative?

Our result shows not only undecidability but also **Turing completeness** of thermalization.

Turing completeness \simeq All possible computation

Any computational task can be implemented by thermalization phenomena.

Striking example

Fact: There exists a (744-state) TM which halts if and only if Riemann hypothesis is false.

(C. Calude and E. Calude, Comp. Sys. 18, 267. (2009)/ A. Yedidia and S. Aaronson, arXiv:1605.04343/ S. Aaronson, <u>https://www.scottaaronson.com/papers/bb.pdf</u>)

There exists a 1d system which thermalizes if and only if **Riemann hypothesis is false**.

(Though the fate of Riemann hypothesis is unknown at present, we can construct this Hamiltonian)

Part 1: General framework to violate ETH

We construct nonintegrable thermalizing system without ETH systematically. This is related to quantum many-body scars.

N. Shiraishi and T. Mori, Phys. Rev. Lett. 119, 030601 (2017)
T. Mori and N. Shiraishi, Phys. Rev. E 96, 022153 (2017)
N. Shiraishi, J. Stat. Mech. 083103 (2019)

Part 2: Undecidability of thermalization

Thermalization in a general form is proven to be undecidable problem.

N. Shiraishi and K. Matsumoto, Nat. Comm. 12, 5084 (2021)

