
The problem of thermalization in 
isolated quantum many-body systems

Naoto Shiraishi (University of Tokyo)

N. Shiraishi and T. Mori, Phys. Rev. Lett. 119, 030601 (2017)
T. Mori and N. Shiraishi, Phys. Rev. E 96, 022153 (2017)
N. Shiraishi, J. Stat. Mech. 083103 (2019) 
N. Shiraishi and K. Matsumoto, Nat. Comm. 12, 5084 (2021)



Thermalization of macroscopic system

Thermalization
Non-equilibrium state goes to a 
unique equilibrium state (i.e., 
macroscopically indistinguishable).

It is true for a macro 
pure quantum state.

Numerical simulation

(M. Rigol, V. Dunjko & M. Olshanii, Nature 452, 854 (2008),
M. Gring, et.al., Science 348, 207 (2015))

Experiment



Why some systems thermalize 
while some others do not?

Some systems do not thermalize!
(relax to initial-state-dependent 
ensemble)

Integrable system
• Free Fermion system
• Bethe anzats

Localized system
• Anderson localization
• Many body localization

Ex)

Many researchers investigate what determines 
presence/absence of thermalization.
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Candidate: Eigenstate 
thermalization hypothesis

Thermal (w.r.t 𝑨𝑨)
State 𝜓𝜓  is thermal w.r.t. 𝐴𝐴 if 𝜓𝜓 𝐴𝐴 𝜓𝜓 ≃ Tr 𝐴𝐴𝜌𝜌MC

Eigenstate thermalization hypothesis (ETH)
All energy eigenstates are thermal

𝑬𝑬𝒏𝒏 𝑨𝑨 𝑬𝑬𝒏𝒏 ≃ 𝐓𝐓𝐓𝐓[𝑨𝑨𝝆𝝆𝑴𝑴𝑴𝑴] (𝐴𝐴: macro observable)

Observable takes the 
same value 
(=equilibrium value)

(J. von Neuman, Z. Phys. 57, 30 (1929), J. M. Deutsch, PRA 43, 2046 (1991), 
M. Srednicki, PRE 50, 888 (1994))

Plot of 𝐸𝐸𝑛𝑛 𝐴𝐴 𝐸𝐸𝑛𝑛 /𝐿𝐿 versus 𝐸𝐸𝑛𝑛



• Many complex (non-integrable, non-localized) 
systems satisfy ETH.

L. F. Santos and M. Rigol, Phys. Rev. E 81, 036206 (2010).
R. Steinigeweg, J. Herbrych, and P. Prelovsek, Phys. Rev. E 87, 012118 (2013).
H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105 (2014).
W. Beugeling, R. Moessner, and M. Haque, Phys. Rev. E 89, 042112 (2014).
T. Yoshizawa, E. Iyoda, and T. Sagawa, Phys. Rev. Lett. 120, 200604 (2018). 

• All known counterexamples to ETH are only 
non-thermalizing systems.

- Integrable systems (with local conserved quantities)
- Localized systems

Known properties of ETH

• ETH is sufficient for thermalization.



Beliefs on ETH
Belief
(1) ETH is satisfied for complex systems such that

• non-integrable (no local conserved quantity)
• shift-invariant (which implies no localization)
• local interaction

(2) ETH is necessary for thermalization.

complex systems ETH thermalization

no ETH no thermalization
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Example: S=1 spin chain

Consider spin-1 chain with p.b.c. with length 𝐿𝐿.

𝑯𝑯𝐭𝐭𝐓𝐓𝐭𝐭𝐭𝐭𝐭𝐭 = �
𝒊𝒊

𝑷𝑷𝒊𝒊𝒛𝒛𝒉𝒉𝒊𝒊𝑷𝑷𝒊𝒊𝒛𝒛

ℎ𝑖𝑖: Arbitrary local Hamiltonian.
Ex) ℎ𝑖𝑖 = 𝑆𝑆𝑖𝑖−1+ 𝑆𝑆𝑖𝑖+1− + 𝑆𝑆𝑖𝑖−1− 𝑆𝑆𝑖𝑖+1+

Projection operator:

(NS and T. Mori, Phys. Rev. Lett. 119, 030601 (2017))



Role of projection operators

𝐻𝐻trial = ∑𝑖𝑖 𝑃𝑃𝑖𝑖𝑧𝑧ℎ𝑖𝑖𝑃𝑃𝑖𝑖𝑧𝑧 

1 00 -1 1 -1

𝑖𝑖 𝑖𝑖 + 1𝑖𝑖 − 1

ℎ𝑖𝑖

|𝜙𝜙⟩

Let us consider the case that 𝐻𝐻trial acts on |𝜙𝜙⟩.

×𝑃𝑃𝑖𝑖𝑧𝑧 𝜙𝜙 = 0



Role of projection operators

1 00 -1 1 -1

𝑖𝑖 𝑖𝑖 + 1𝑖𝑖 − 1

ℎ𝑖𝑖−1

|𝜙𝜙⟩

𝑃𝑃𝑖𝑖−1𝑧𝑧 𝜙𝜙 = |𝜙𝜙⟩

𝐻𝐻trial = ∑𝑖𝑖 𝑃𝑃𝑖𝑖𝑧𝑧ℎ𝑖𝑖𝑃𝑃𝑖𝑖𝑧𝑧 

Let us consider the case that 𝐻𝐻trial acts on |𝜙𝜙⟩.



2𝐿𝐿 eigenstates with zero energy

𝒯𝒯: 2𝐿𝐿 states with all spins at ±1
1 -11 -1 1 -1

Energy

DoS

thermal state 
determined by ℎ𝑖𝑖

0

𝟐𝟐𝑳𝑳 nonthermal
states at 𝑬𝑬 = 𝟎𝟎

They are eigenstates of 𝐻𝐻trial with zero energy! 
(∵ 𝜓𝜓 ∈ 𝒯𝒯 satisfies 𝑷𝑷𝒊𝒊𝒛𝒛 𝝍𝝍 = 𝟎𝟎 for all 𝑖𝑖). 



Resolving 2𝐿𝐿 degeneracy

𝑯𝑯 = �
𝒊𝒊

𝑷𝑷𝒊𝒊𝒛𝒛𝒉𝒉𝒊𝒊𝑷𝑷𝒊𝒊𝒛𝒛 + 𝑯𝑯𝑯

𝐻𝐻𝑯: Arbitrary Hamiltonian acting only on |1⟩ and | − 1⟩

1 -1 1-1

Ex) If 𝜓𝜓 ∈ 𝒯𝒯, then 𝐻𝐻′ 𝜓𝜓 ∈ 𝒯𝒯.

Energy

DoS

0

States in 𝒯𝒯 are still non-thermal 
eigenstates (independent of ℎ𝑖𝑖).
→Violation of ETH!
(NS and T. Mori, Phys. Rev. Lett. 119, 030601 (2017))



Confirming violation of ETH

2𝐿𝐿 states in 𝒯𝒯 
are indeed 
non-thermal!

thermal average

Plot of 𝐸𝐸𝑛𝑛 �𝑂𝑂 𝐸𝐸𝑛𝑛 /𝐿𝐿 versus 𝐸𝐸𝑛𝑛/𝐿𝐿

(NS and T. Mori, Phys. Rev. Lett. 119, 030601 (2017))



Generalization: Method of embedding
𝒯𝒯: target states we want to embed
𝑃𝑃𝑖𝑖: local projection operators

𝜓𝜓 ∈ 𝒯𝒯 ⇒ 𝑃𝑃𝑖𝑖 𝜓𝜓 = 0

Then, the Hamiltonian with arbitrary ℎ𝑖𝑖
𝑯𝑯 = ∑𝒊𝒊𝑷𝑷𝒊𝒊𝒉𝒉𝒊𝒊𝑷𝑷𝒊𝒊 + 𝑯𝑯′

has the target states 𝓣𝓣 as its eigenstates.
(𝐻𝐻𝑯: satisfying 𝐻𝐻′,𝑃𝑃𝑖𝑖 = 0 for all 𝑖𝑖 )

Any MPS (matrix-product state) can be target state! 
(ex: AKLT, dimer states, Schrodinger’s cat…)

(NS and T. Mori, Phys. Rev. Lett. 119, 030601 (2017))
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What type of initial state thermalizes?
States with all spins ±1 never thermalize.
What about a state with a single spin 0?

Single spin 0 is sufficient for thermalization!

1 01 -1 1 -1

defect
(T. Mori and NS, Phys. Rev. E 96, 022153 (2017))



Thermalization: schematic picture

ℎ1

1 2 3 4𝐿𝐿𝐿𝐿 − 1



Thermalization: schematic picture

ℎ𝐿𝐿

1 2 3 4𝐿𝐿𝐿𝐿 − 1

ℎ2

Defects can spread among whole system!



Quench in macroscopic systems

Quench from ground state (𝑇𝑇 = 0) → Yes

Quench from thermal state (𝑇𝑇 > 0) → No!
(Zero-defect state realizes with very small prob.)

Is initial state with zero defect preparable?

Absolute zero temperature is unreachable.
→physical quench inevitably contain defects. 

(T. Mori and NS, Phys. Rev. E 96, 022153 (2017))



Thermalization without ETH
Quench from thermal state of different Hamiltonian.

Thermalization indeed occurs!

Equilibrium

(T. Mori and NS, Phys. Rev. E 96, 022153 (2017))



Non-local conserved quantity 
matters to macroscopic physics

Small system, low temperature
→thermalization may disappear!

Stationary state: nonlocal GGE 
(generalized Gibbs ensemble)

𝒬𝒬 ≔ ∏𝑖𝑖(1 − 𝑃𝑃𝑖𝑖) :nonlocal projection operator to 𝒯𝒯
𝒫𝒫 ≔ 1 − 𝒬𝒬 

𝝆𝝆𝑮𝑮𝑮𝑮𝑬𝑬 ∝ 𝒆𝒆−𝜷𝜷𝑷𝑷𝓟𝓟𝑯𝑯𝓟𝓟−𝜷𝜷𝑸𝑸𝓠𝓠𝑯𝑯𝓠𝓠−𝝀𝝀𝓠𝓠

𝛽𝛽𝑃𝑃,𝛽𝛽𝑄𝑄, 𝜆𝜆 : depend on initial state

Equilibrium

(T. Mori and NS, Phys. Rev. E 96, 022153 (2017))



Quantum many-body scars

Experiment of Rydberg atoms
(H. Bernien, et al. Nature 551, 579 (2017))

Initial-state-dependent  long-
lived oscillation (Quantum 
many-body scar) is observed. 



Quantum many-body scar is a kind 
of embedded Hamiltonian

PXP model (effective Hamiltonian of scar system) is 
nonintegrable, but some eigenstates are 
nonthermal, which can be explicitly solvable. 

(C.-J. Lin and O. I. Motrunich, Phys. Rev. Lett. 122, 173401 (2019)).

(Mapped) PXP model is written as an embedded 
Hamiltonian which embeds AKLT state.

(NS, J. Stat. Mech. 083103 (2019)).

In fact, most of models of quantum many-body 
scars are also embedded Hamiltonians. 
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Question

ETH is not a general answer for thermalization.

What determines the presence/absence of 
thermalization?

To investigate this question, we employ a simple 
setup: 1d spin chain with 𝑑𝑑 local states.



Statement of decision problem

Initial state： 𝜙𝜙0 ⊗ 𝜙𝜙1 ⊗ 𝜙𝜙1 ⊗⋯⊗ 𝜙𝜙1

Observable：spatial average of 1-body observable 
𝑨𝑨 = 𝟏𝟏

𝑳𝑳
∑𝒊𝒊 𝒂𝒂𝒊𝒊 (𝑎𝑎 is arbitrary)

( 𝜙𝜙0 𝜙𝜙1 = 0)

Input：-𝑑𝑑2 × 𝑑𝑑2 local Hamiltonian ℎ
System Hamiltonian is 𝑯𝑯 = ∑𝒊𝒊𝒉𝒉𝒊𝒊,𝒊𝒊+𝟏𝟏

-Target value 𝐴𝐴∗

Arbitrarily given parameters

(In case of undecidability of relaxation.)



Statement of decision problem
Decision problem with promise
Decide whether the difference between 
• �̅�𝐴 (long time average of A: determined by 𝐻𝐻, 𝜓𝜓 ,𝐴𝐴)
• a given value 𝐴𝐴∗
is (1) less than 𝜖𝜖1, or (2) larger than 𝜖𝜖2 (> 𝜖𝜖1) in the 
thermodynamic limit.

?

?



Main result: 
undecidability of thermalization

It is easy to set 𝐴𝐴∗ 
to the equilibrium 
value 𝐴𝐴eq, which 
is undecidability 
of thermalization.

?

?

Theorem：Given 𝐴𝐴, 𝜓𝜓 0 and fix. The presence or 
absence of thermalization is undecidable. (For given 
𝐻𝐻, no procedure determines the presence/absence 
of thermalization.) (NS and K. Matsumoto, Nat. Comm. 12, 5084 (2021))



Decidable/undecidable
Decidable：There exists a procedure (algorithm) 
which answers Yes/No correctly for any input.
(Remark: it can take extremely long time)

Ex）• Proven in the form of theorem

• Optimization (ex: traveling salesman problem)

• Indefinite integration ∫ 𝑑𝑑𝑑𝑑
𝑒𝑒sin 𝑥𝑥

𝑑𝑑2 + cos 𝑑𝑑 =?

• Whether black/white wins in (generalized) Go.

• First order real closed field (problem with four arithmetic 
operation and inequality in real number) 



Decidable/undecidable
Decidable：There exists a procedure (algorithm) 
which answers Yes/No correctly for any input.
(Remark: it can take extremely long time)

Undecidable：There is no procedure/algorithm 
which decides Yes/No correctly (Of course, there is no 
general theorem)

(Related to Godel’s incompleteness theorem)



Undecidability of halting problem

Halting problem of Turing machine (TM)
Input: an input for a given universal TM. 
Problem: Does universal TM with this input “halt at 
some time” or “not halt forever”?

This problem is undecidable (There is no procedure 
deciding whether this TM halts or not).

(Universal TM: a computer which can compute any computational task)



Most important lemma

Lemma：For any program of universal TM, there 
exists a corresponding Hamiltonian such that it 
thermalizes iff the TM with this program halts.

Finish!

Since halting problem is undecidable, 
thermalization is also undecidable.



Strategy

1. We first construct a proper classical TM which 
has different value of A between halting and 
non-halting of TM.

2. We emulate this classical system by quantum 
many-body systems. (Like Feynman-Kitaev
construction)

Since 2 is a well known method, we mainly treat 1.



Outline

Part 1: General framework to violate ETH

-Construction of Hamiltonian
-Dynamics

Part 2: Undecidability of thermalization
-Main claim
-Construction of classical TM

-Background

-Quantum emulation



Structure and dynamics

Dynamics
1. Decode input code x from Layer 2.
2. Universal TM runs with input code x.
3. Flip the value of observable A if and only if the 

universal TM halts.

Two-layer structure
Layer 1：Working space of universal TM
Layer 2：Storing input code x of universal TM.



Structure of classical TM (schematic)

Layer 1：Working space of universal TM

Layer 2：Storing input code x for universal TM



Step 1: How to decode the input x

input x with 01 bit ↔real number 𝜷𝜷 in decimal

TM1 estimates the relative frequency of 1 in layer 2, 
and output the result to layer 1.

classical：Set the probability of bit 1 as 𝛽𝛽.
quantum：Align 𝛽𝛽 1 + 1 − 𝛽𝛽 0 .

(ex: If input code is x=1101, 𝛽𝛽 = 0.1011 = 1
2

+ 1
8

+ 1
16

= 11
16

)  

1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1



Step 2: in case of non-halting

If TM2 steps across the periodic boundary (wall), 
then TM2 stops.

wall

In case of non-halting, TM2 must hit wall at some time.

We set the 𝐿𝐿-th cell as “wall” at the first step.

Universal TM runs with input x.



Step 3: flipping (in case of halting)

(When all A-cells are flipped, TM3 stops (relaxation), 
or just spends time (thermalization))

Value of A：𝑎𝑎2 > 𝑎𝑎1 = 0
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Feynman-Kitaev type Hamiltonian

0 10 0𝑞𝑞2 0 10 0𝑞𝑞4

Quantum Hamiltonian
Local Hamiltonian should have |𝟎𝟎𝒒𝒒𝟒𝟒⟩⟨𝒒𝒒𝟐𝟐𝟎𝟎| + 𝒄𝒄. 𝒄𝒄..
(Total Hamiltonian has its shift-sum.)

• This Hamiltonian is local (nearest-neighbor).
• Only the vicinity of control unit can evolve.

Classical TM



Dynamics in classical system
= Eigenstate in quantum system

0 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

+

+

+

𝐸𝐸𝑛𝑛 =

Classical system
Dynamics of CA

Quantum system
Single energy eigenstate

𝑐𝑐1

𝑐𝑐2

𝑐𝑐3



In case of halting…

0 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

+

+

+

𝐸𝐸𝑛𝑛 =

Classical system
Dynamics of CA

Quantum system
Single energy eigenstate

𝑐𝑐1

𝑐𝑐2

𝑐𝑐3

Most states 
have large A

Energy eigenstate |𝐸𝐸𝑛𝑛⟩ has 
large expectation value of 𝐴𝐴



Thermalization is Turing complete

Our result shows not only undecidability but also 
Turing completeness of thermalization.

Turing completeness ≃ All possible computation

Any computational task can be implemented by 
thermalization phenomena.

Is our result negative?



Striking example
Fact: There exists a (744-state) TM which halts if 
and only if Riemann hypothesis is false.
(C. Calude and E. Calude, Comp. Sys. 18, 267. (2009)/ A. Yedidia and S. Aaronson, 
arXiv:1605.04343/ S. Aaronson, https://www.scottaaronson.com/papers/bb.pdf )

There exists a 1d system which thermalizes if and 
only if Riemann hypothesis is false.

(Though the fate of Riemann hypothesis is unknown 
at present, we can construct this Hamiltonian)

https://www.scottaaronson.com/papers/bb.pdf


Summary of this talk

Part 1: General framework to violate ETH
We construct nonintegrable thermalizing system without ETH 
systematically. This is related to quantum many-body scars. 

N. Shiraishi and T. Mori, Phys. Rev. Lett. 119, 030601 (2017)
T. Mori and N. Shiraishi, Phys. Rev. E 96, 022153 (2017)
N. Shiraishi, J. Stat. Mech. 083103 (2019) 

Part 2: Undecidability of thermalization
Thermalization in a general form is proven to be undecidable 
problem.

N. Shiraishi and K. Matsumoto, Nat. Comm. 12, 5084 (2021)

END


	The problem of thermalization in isolated quantum many-body systems
	Thermalization of macroscopic system
	Why some systems thermalize while some others do not?
	Outline
	Outline
	Candidate: Eigenstate thermalization hypothesis
	Known properties of ETH
	Beliefs on ETH
	Outline
	Example: S=1 spin chain
	Role of projection operators
	Role of projection operators
	 2 𝐿  eigenstates with zero energy
	Resolving  2 𝐿  degeneracy
	Confirming violation of ETH
	Generalization: Method of embedding
	Outline
	What type of initial state thermalizes?
	Thermalization: schematic picture
	Thermalization: schematic picture
	Quench in macroscopic systems
	Thermalization without ETH
	Non-local conserved quantity matters to macroscopic physics
	Quantum many-body scars
	Quantum many-body scar is a kind of embedded Hamiltonian
	Outline
	Question
	Statement of decision problem
	Statement of decision problem
	Main result: �undecidability of thermalization
	Decidable/undecidable
	Decidable/undecidable
	Undecidability of halting problem
	Most important lemma
	Strategy
	Outline
	Structure and dynamics
	Structure of classical TM (schematic)
	Step 1: How to decode the input x
	Step 2: in case of non-halting
	Step 3: flipping (in case of halting)
	Outline
	Feynman-Kitaev type Hamiltonian
	Dynamics in classical system�= Eigenstate in quantum system
	In case of halting…
	Thermalization is Turing complete
	Striking example
	Summary of this talk

