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Setup of stochastic thermodynamics

heat bath

system

Consider classical small systems evolving stochastically 
due to thermal noise.

Colloidal particle

Setup throughout this talk
Heat bath is in equilibrium
→describe as Markov process



Description of 
classical stochastic process

Probability distribution 𝒑𝒑 evolves according to the
master equation.

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑝𝑝𝑤𝑤,𝑡𝑡 = �

𝑤𝑤′

𝑅𝑅𝑤𝑤𝑤𝑤′𝑝𝑝𝑤𝑤′,𝑡𝑡

normalization condition: ∑𝒘𝒘𝑹𝑹𝒘𝒘𝒘𝒘′ = 𝟎𝟎 

(only 𝑅𝑅𝑤𝑤′𝑤𝑤′ is negative, others are nonnegative)

𝑤𝑤1

𝑤𝑤2

𝑤𝑤3

transition matrix



Definition of entropy production rate

Entropy production rate (single heat bath)

�̇�𝜎 = −�
𝑤𝑤

𝛽𝛽𝐸𝐸𝑤𝑤
𝑑𝑑𝑝𝑝𝑤𝑤
𝑑𝑑𝑑𝑑

+
𝑑𝑑
𝑑𝑑𝑑𝑑

−�
𝑤𝑤

𝑝𝑝𝑤𝑤 ln 𝑝𝑝𝑤𝑤

Entropy increase of bath
（𝑑𝑑𝑑𝑑/𝑇𝑇）

(Shannon) entropy 
increase of system



Local detailed-balance condition

Local detailed-balance (LDB)
If distribution is canonical (equilibrium), there is no 
microscopic probability current.

𝑅𝑅𝑤𝑤𝑤𝑤′

𝑅𝑅𝑤𝑤′𝑤𝑤
= 𝑒𝑒−𝛽𝛽 𝐸𝐸𝑤𝑤−𝐸𝐸𝑤𝑤′

(For case of multiple baths, LDB is imposed on 
each single bath)



Definition of entropy production rate

= �
𝑤𝑤,𝑤𝑤′

𝑅𝑅𝑤𝑤′𝑤𝑤𝑝𝑝𝑤𝑤 ln
𝑅𝑅𝑤𝑤′𝑤𝑤𝑝𝑝𝑤𝑤
𝑅𝑅𝑤𝑤𝑤𝑤′𝑝𝑝𝑤𝑤′

Entropy production rate (single heat bath)

�̇�𝜎 = −�
𝑤𝑤

𝛽𝛽𝐸𝐸𝑤𝑤
𝑑𝑑𝑝𝑝𝑤𝑤
𝑑𝑑𝑑𝑑

+
𝑑𝑑
𝑑𝑑𝑑𝑑

−�
𝑤𝑤

𝑝𝑝𝑤𝑤 ln 𝑝𝑝𝑤𝑤

Assuming local detailed-balance (LDB)



�̇�𝜎 = �
𝑤𝑤≠𝑤𝑤′

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 ln
𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤
𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′

=
1
2
�
𝑤𝑤≠𝑤𝑤′

(𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 − 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′) ln
𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤
𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′

≥ �
𝑤𝑤≠𝑤𝑤′

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 − 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′ 2

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′

Pseudo entropy production Π

=: �̇�𝚷 pseudo entropy production rate

(N. Shiraishi, J. Stat. Phys. 185, 19 (2021))



Second law

Integration of entropy production rate is entropy 
production (entropy increase)

𝜎𝜎 = �
0

𝜏𝜏
𝑑𝑑𝑑𝑑 �̇�𝜎

�̇�𝜎 ≥ 0 implies 𝜎𝜎 ≥ 0.
（Both inequalities are called the second law）

(Π̇ ≥ 0 implies Π = ∫ 𝑑𝑑𝑑𝑑Π̇ ≥ 0)
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Speed limit: problem

Problem: Given Initial and final distributions.
How quick can we transform this distribution?

initial distribution

final distribution

We can tune how to 
change the control 
parameters.



Speed limits: some attempts

Overdamped Langevin systems
K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).
E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).

Physical picture is clear.
But system (and derivation) is specific to 
overdamped Langevin systems.

Entropy production is a cost of quick state 
transformation.



Main result (Part 1)

ℒ 𝑝𝑝,𝑝𝑝′ 2

2𝜎𝜎 𝐴𝐴
≤ 𝜏𝜏

ℒ 𝑝𝑝,𝑝𝑝′ ≔ ∑𝑤𝑤 |𝑝𝑝𝑤𝑤 − 𝑝𝑝𝑤𝑤′ | : total variation distance

〈𝐴𝐴〉: averaged dynamical activity ∫0
𝜏𝜏 𝑑𝑑𝑑𝑑𝐴𝐴(𝑑𝑑)

(N. Shiraishi, K Funo, and K. Saito, PRL 121, 070601 (2018))

For any Markov jump process with LDB, we have



What is dynamical activity?

𝐴𝐴(𝑑𝑑) ≔ �
𝑤𝑤≠𝑤𝑤′

𝑅𝑅𝑤𝑤′𝑤𝑤𝑝𝑝𝑤𝑤(𝑑𝑑)

Dynamical activity: How frequently jumps occur.

Activity determines time-scale of dynamics.

Glassy dynamics:
Nonequilibrium steady state:

J. P. Garrahan, et al., PRL 98, 195702 (2007).
M. Baiesi, et al., PRL 103, 010602 (2009).

+1

+1

Activity
+1

−1

cf) Current



Physical meaning of this inequality

ℒ 𝑝𝑝,𝑝𝑝′ 2

2𝜎𝜎 𝐴𝐴
≤ 𝜏𝜏

Length between initial and final distributions

Time-scale of dynamicsEntropy production:
Cost of quick state 
transformation



Numerical demonstration

0

1

2-state system

0 1

1/2 1/2

0 1

3/4

1/4𝑝𝑝1 𝑑𝑑 =
1
2
−

𝑑𝑑
4𝜏𝜏

𝜏𝜏𝐼𝐼: =
ℒ 𝑝𝑝, 𝑝𝑝′ 2

2𝜎𝜎 𝐴𝐴
≤ 𝜏𝜏



Derivation (instantaneous quantities)

= �
𝑤𝑤

�
𝑤𝑤′(≠𝑤𝑤)

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 − 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′

≤�
𝑤𝑤

�
𝑤𝑤′(≠𝑤𝑤)

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′ ⋅ �
𝑤𝑤′(≠𝑤𝑤)

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 − 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′ 2

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′

�
𝑤𝑤

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑝𝑝𝑤𝑤

Schwarz inequality ∑𝑖𝑖 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 2 ≤ (∑𝑖𝑖 𝑎𝑎𝑖𝑖2) (∑𝑖𝑖 𝑏𝑏𝑖𝑖2)



Derivation (instantaneous quantities)

= �
𝑤𝑤

�
𝑤𝑤′(≠𝑤𝑤)

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 − 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′

≤�
𝑤𝑤

�
𝑤𝑤′(≠𝑤𝑤)

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′ ⋅ �
𝑤𝑤′(≠𝑤𝑤)

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 − 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′ 2

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′

�
𝑤𝑤

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑝𝑝𝑤𝑤

≤ �
𝑤𝑤′≠𝑤𝑤

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′ ⋅ �
𝑤𝑤′≠𝑤𝑤

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 − 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′ 2

𝑅𝑅𝑤𝑤′𝑤𝑤𝑃𝑃𝑤𝑤 + 𝑅𝑅𝑤𝑤𝑤𝑤′𝑃𝑃𝑤𝑤′

= 2𝐴𝐴Π̇ ≤ 2𝐴𝐴�̇�𝜎



Derivation (time integration)

ℒ 𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑓𝑓 ≤�
𝑤𝑤

�
0

𝜏𝜏
𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑝𝑝𝑤𝑤

≤ �
0

𝜏𝜏
𝑑𝑑𝑑𝑑 2�̇�𝜎𝐴𝐴 ≤ 2𝜏𝜏𝜎𝜎〈𝐴𝐴〉

This is the desired result!

𝓛𝓛 𝒑𝒑,𝒑𝒑′ 𝟐𝟐

𝟐𝟐𝝈𝝈 𝑨𝑨
≤
𝓛𝓛 𝒑𝒑,𝒑𝒑′ 𝟐𝟐

𝟐𝟐𝚷𝚷 𝑨𝑨
≤ 𝝉𝝉



Note: some development

Using Wasserstein distance 𝒲𝒲(𝑝𝑝, 𝑝𝑝′) (a distance 
defined in optimal transport theory), we have

𝒲𝒲 𝑝𝑝, 𝑝𝑝′ 2

2Π 𝐴𝐴
≤ 𝜏𝜏

and its equality is achievable (tight).
(A. Dechant, J. Phys. A Math. Theor. 55, 094001 (2022))

Its derivation is more technical and complicated.
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Problem: entropy production in 
thermal relaxation process

𝑑𝑑 = 0 𝑑𝑑 = 𝜏𝜏 𝑑𝑑 = ∞

Situation：relaxation process with a single heat bath 
in continuous time. We assume LDB.

Goal：Deriving lower bound of entropy production 
within 0 ≤ 𝑑𝑑 ≤ 𝜏𝜏 (denoted by 𝜎𝜎 0,𝜏𝜏 )



Main result (Part 2)

𝑑𝑑 = 0 𝑑𝑑 = 𝜏𝜏

𝝈𝝈 𝟎𝟎,𝝉𝝉 ≥ 𝑫𝑫(𝒑𝒑(𝟎𝟎)||𝒑𝒑 𝝉𝝉 )
𝑝𝑝(0) 𝑝𝑝(𝜏𝜏)

𝐷𝐷(𝑝𝑝| 𝑞𝑞 ≔ ∑𝑖𝑖 𝑝𝑝𝑖𝑖 ln 𝑝𝑝𝑖𝑖
𝑞𝑞𝑖𝑖

 : Kullback-Leibler divergence

(a kind of (pseudo-)distance)
(N. Shiraishi and K. Saito, PRL 123, 110603 (2019))



Significance

𝝈𝝈 𝟎𝟎,𝝉𝝉 ≥ 𝑫𝑫(𝒑𝒑(𝟎𝟎)||𝒑𝒑 𝝉𝝉 )

• Only for relaxation processes (It does not hold 
in general process).

• Equality holds for both 𝜏𝜏 = 0 and 𝝉𝝉 = ∞.

• It does not hold in discrete time Markov chain.



Numerical demonstration
Setup：three-state model
Take a system with anomalous (two-step) relaxation.



Geometric visualization

Relation 𝝈𝝈 𝟎𝟎,𝝉𝝉 = 𝑫𝑫(𝒑𝒑(𝟎𝟎)| 𝒑𝒑𝒆𝒆𝒆𝒆 − 𝑫𝑫(𝒑𝒑(𝝉𝝉)||𝒑𝒑𝒆𝒆𝒆𝒆)
implies

𝑫𝑫(𝒑𝒑(𝟎𝟎)| 𝒑𝒑𝒆𝒆𝒆𝒆 ≥ 𝑫𝑫(𝒑𝒑(𝟎𝟎)| 𝒑𝒑 𝝉𝝉 + 𝑫𝑫(𝒑𝒑(𝝉𝝉)||𝒑𝒑𝒆𝒆𝒆𝒆)

𝑝𝑝(0)
𝑝𝑝(𝜏𝜏)

𝑝𝑝𝑒𝑒𝑞𝑞

larger than 
right angle!

Remark: 
KL-divergence ↔ square of distance



Restriction on possible trajectory

𝑝𝑝(0) 𝑝𝑝𝑒𝑒𝑞𝑞

Second law

Given both initial and equilibrium distribution.
What is possible pass of relaxation processes?

state space



Restriction on possible trajectory

𝑝𝑝(0) 𝑝𝑝𝑒𝑒𝑞𝑞

second law

始状態と平衡分布（温度）が与えられている際、
どのような緩和の経路がありうるのか？

state space

Obtained relation
𝑫𝑫(𝒑𝒑(𝟎𝟎)| 𝒑𝒑𝒆𝒆𝒆𝒆 ≥ 𝑫𝑫(𝒑𝒑(𝟎𝟎)| 𝒑𝒑 𝝉𝝉 + 𝑫𝑫(𝒑𝒑(𝝉𝝉)||𝒑𝒑𝒆𝒆𝒆𝒆)



Restriction on possible trajectory

Obtained relation
𝑫𝑫(𝒑𝒑(𝟎𝟎)| 𝒑𝒑𝒆𝒆𝒆𝒆 ≥ 𝑫𝑫(𝒑𝒑(𝟎𝟎)| 𝒑𝒑 𝝉𝝉 + 𝑫𝑫(𝒑𝒑(𝝉𝝉)||𝒑𝒑𝒆𝒆𝒆𝒆)

𝑝𝑝(0) 𝑝𝑝𝑒𝑒𝑞𝑞

second lawour result

×

×



Key relation: variational expression 
of entropy production rate

�̇�𝜎 = −
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐷𝐷(𝑝𝑝(𝑑𝑑)||𝑝𝑝𝑒𝑒𝑞𝑞)

Because right-hand side equals

−
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑖𝑖

𝑝𝑝𝑖𝑖 ln 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖 ln
𝑒𝑒−𝛽𝛽𝐸𝐸𝑖𝑖
𝑍𝑍

=
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐻𝐻 𝒑𝒑 +

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐸𝐸 = �̇�𝜎



Key relation: variational expression 
of entropy production rate

�̇�𝜎 = −
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐷𝐷(𝑝𝑝(𝑑𝑑)||𝑝𝑝𝑒𝑒𝑞𝑞)

= 𝐦𝐦𝐦𝐦𝐦𝐦
𝒆𝒆

−
𝒅𝒅
𝒅𝒅𝒅𝒅
𝑫𝑫(𝒑𝒑(𝒅𝒅)||𝒆𝒆 −𝒅𝒅 )

𝑞𝑞(−𝑑𝑑)：distribution evolves backward in time 
under the same transition matrix as 𝑝𝑝(𝑑𝑑).

(N. Shiraishi and K. Saito, PRL 123, 110603 (2019))



Schematic of variational expression

Green lines：KL divergence 𝐷𝐷(𝑝𝑝||𝑞𝑞) 
Difference between solid line and dashed line takes 
maximum when 𝑞𝑞 = 𝑝𝑝𝑒𝑒𝑞𝑞.

�̇�𝜎 = max
𝑞𝑞

−
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐷𝐷(𝑝𝑝(𝑑𝑑)||𝑞𝑞 −𝑑𝑑 )



Variational expression leads to 
bound on relaxation processes

𝑝𝑝(0)

𝑝𝑝 𝜏𝜏

𝑝𝑝(𝜏𝜏/2)

𝜎𝜎 0,𝜏𝜏/2 ≥ −�
0

𝜏𝜏/2
𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐷𝐷(𝑝𝑝(𝑑𝑑)||𝑞𝑞 −𝑑𝑑 )

= 𝐷𝐷(𝑝𝑝(0)||𝑝𝑝 𝜏𝜏 )

= 𝑞𝑞(0)

From 𝜎𝜎 0,𝜏𝜏 ≥ 𝜎𝜎 0,𝜏𝜏/2 , we have

𝝈𝝈 𝟎𝟎,𝝉𝝉 ≥ 𝑫𝑫(𝒑𝒑(𝟎𝟎)||𝒑𝒑 𝝉𝝉 )



Proof of variational expression

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐷𝐷(𝑝𝑝(𝑑𝑑)| 𝑞𝑞 −𝑑𝑑 − 𝐷𝐷(𝑝𝑝(𝑑𝑑)||𝑝𝑝𝑒𝑒𝑞𝑞) ≥ 0

for any 𝑞𝑞.

The left-hand side is equal to 
𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑖𝑖

𝑝𝑝𝑖𝑖 𝑑𝑑 ln
𝑝𝑝𝑖𝑖
𝑒𝑒𝑞𝑞

𝑞𝑞𝑖𝑖 −𝑑𝑑

It suffices to prove



Proof of variational expression

We used



Proof of variational expression

（We used 𝑥𝑥 − 1 − ln 𝑥𝑥 ≥ 0）
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Brief review of stochastic thermodynamics

Part 1: Finite-speed processes

Part 2: Relaxation processes

Part 3: Oscillation phenomena



Fluctuation oscillation phenomena
𝑎𝑎, 𝑏𝑏: state variable

𝑎𝑎

𝑏𝑏

Fluctuation oscillates in 
a-b plane.



Quantifying oscillation

Oscillation is quantified by
𝜶𝜶𝒂𝒂𝒂𝒂 ≔ ⟨𝒂𝒂�̇�𝒂 − 𝒂𝒂�̇�𝒂⟩

To normalize the speed of oscillation by relaxation 
speed, we introduce autocorrelation:

𝐷𝐷𝑎𝑎 ≔ − 𝑎𝑎�̇�𝑎 =
1
2
�
𝑖𝑖,𝑗𝑗

𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑗𝑗
2𝑅𝑅𝑖𝑖𝑗𝑗𝑝𝑝𝑗𝑗𝑠𝑠𝑠𝑠

2𝛼𝛼𝑎𝑎𝑎𝑎
𝐷𝐷𝑎𝑎 + 𝐷𝐷𝑎𝑎

Task: Bound                    by entropy production. 



Main result (Part 3)

𝟐𝟐 𝜶𝜶𝒂𝒂𝒂𝒂
𝑫𝑫𝒂𝒂 + 𝑫𝑫𝒂𝒂

≤
�̇�𝝈

𝟐𝟐𝟐𝟐𝒘𝒘𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨

𝑤𝑤osci is a characteristic maximum angular speed of 
oscillation:

𝜋𝜋max[𝑎𝑎𝑖𝑖2 + 𝑏𝑏𝑖𝑖2]

𝛼𝛼𝑎𝑎𝑎𝑎

𝑤𝑤osci ≔
𝛼𝛼𝑎𝑎𝑎𝑎

𝜋𝜋max[𝑎𝑎𝑖𝑖2 + 𝑏𝑏𝑖𝑖2]

(N. Shiraishi, arXiv:2304.12775)



Physical meaning of main result

𝟐𝟐 𝜶𝜶𝒂𝒂𝒂𝒂
𝑫𝑫𝒂𝒂 + 𝑫𝑫𝒂𝒂

≤
�̇�𝝈

𝟐𝟐𝟐𝟐𝒘𝒘𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨

Strength of oscillation 
(relative to relaxation)

Entropy production per 
single oscillation



Geometric interpretation 1

𝑫𝑫𝒂𝒂 + 𝑫𝑫𝒂𝒂

𝟐𝟐
=
𝟏𝟏
𝟐𝟐
�
(𝒊𝒊,𝒋𝒋)

𝑨𝑨𝒊𝒊𝒋𝒋𝒍𝒍𝒊𝒊𝒋𝒋𝟐𝟐Autocorrelation is written as

𝐴𝐴𝑖𝑖𝑗𝑗: activity

𝑙𝑙𝑖𝑖𝑗𝑗 ≔ 𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑗𝑗
2 + 𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑗𝑗

2
: length from i to j

(𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖)

(𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗)

𝑙𝑙𝑖𝑖𝑗𝑗

(N. Ohga, et al., arXiv:2303.13116)

(Intuitive: autocorrelation = 
average squared displacement)



Geometric interpretation 2

We define length from origin as 𝑟𝑟𝑖𝑖 ≔ 𝑎𝑎𝑖𝑖2 + 𝑏𝑏𝑖𝑖2.

Fluctuation oscillation is evaluated as

𝛼𝛼𝑎𝑎𝑎𝑎 = �
𝑖𝑖,𝑗𝑗

𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑎𝑎𝑗𝑗 𝑅𝑅𝑖𝑖𝑗𝑗𝑝𝑝𝑗𝑗𝑠𝑠𝑠𝑠 = �
(𝑖𝑖,𝑗𝑗)

𝑆𝑆𝑖𝑖𝑗𝑗𝐽𝐽𝑖𝑖𝑗𝑗

(𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖)

(𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗)

𝑙𝑙𝑖𝑖𝑗𝑗

𝑟𝑟𝑖𝑖

𝑟𝑟𝑗𝑗 𝑆𝑆𝑖𝑖𝑗𝑗

Important evaluation:

𝑺𝑺𝒊𝒊𝒋𝒋 ≤
𝟏𝟏
𝟐𝟐
𝒓𝒓𝒊𝒊𝒍𝒍𝒊𝒊𝒋𝒋 ≤

𝟏𝟏
𝟐𝟐
𝒓𝒓𝐦𝐦𝐦𝐦𝐦𝐦𝒍𝒍𝒊𝒊𝒋𝒋



Proof

Schwarz inequality: 



Proof



Summary

• Trade-off relation between speed and entropy 
production:

• Bound on entropy production in relaxation 
process:

• Trade-off between oscillation and entropy 
production

𝝈𝝈 ≥ 𝑫𝑫(𝒑𝒑(𝟎𝟎)||𝒑𝒑 𝝉𝝉 )

END

𝓛𝓛 𝒑𝒑,𝒑𝒑′ 𝟐𝟐

𝟐𝟐𝝈𝝈 𝑨𝑨
≤ 𝝉𝝉

𝟐𝟐 𝜶𝜶𝒂𝒂𝒂𝒂
𝑫𝑫𝒂𝒂 + 𝑫𝑫𝒂𝒂

≤
�̇�𝝈

𝟐𝟐𝟐𝟐𝒘𝒘𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨
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