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Setup of stochastic thermodynamics

Consider classical small systems evolving stochastically
due to thermal noise. N
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Setup throughout this talk p [system l
Heat bath is in equilibrium
>describe as Markov process heat bath




Description of
classical stochastic process

Probability distribution p evolves according to the
master equation.
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Definition of entropy production rate

Entropy production rate (single heat bath)
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Local detailed-balance condition

Local detailed-balance (LDB)
If distribution is canonical (equilibrium), there is no
microscopic probability current.
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(For case of multiple baths, LDB is imposed on
each single bath)



Definition of entropy production rate

Entropy production rate (single heat bath)
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Pseudo entropy production 11
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(N. Shiraishi, J. Stat. Phys. 185, 19 (2021))




Second law

Integration of entropy production rate is entropy
production (entropy increase)

T
O'=Jdt0"
0

o = 0 implieso = 0.
(Both inequalities are called the second law)

(I = 0 implies IT1 = [ dtII > 0)
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Speed limit: problem

Problem: Given Initial and final distributions.

How quick can we transform this distribution?

initial distribution

We can tune how to
change the control

pa rameters.
final distribution



Speed limits: some attempts

Overdamped Langevin systems
K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).

E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).
\/ — U
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Entropy production is a cost of quick state
transformation.

Physical picture is clear.
But system (and derivation) is specific to
overdamped Langevin systems.



Main result (Part 1)

For any Markov jump process with LDB, we have

(N. Shiraishi, K Funo, and K. Saito, PRL 121, 070601 (2018))

Lp,p") =2 |pw —py | : total variation distance
(A): averaged dynamical activity fOT dtA(t)



What is dynamical activity?
Dynamical activity: How frequently jumps occur.

AR = ) Rynybu(®)

WF+W/

Activity determines time-scale of dynamics.

Activity cf) Current
+1 +1
— P\
—~ =

Glassy dynamics: J. P. Garrahan, et al., PRL 98, 195702 (2007).
Nonequilibrium steady state: M. Baiesi, et al., PRL 103, 010602 (2009).



Physical meaning of this inequality

[Length between initial and final distributions]

/

L(p,p")? <.
20(A)

(Entropv pro% me of dynamics]

Cost of quick state
\transformation y




Numerical demonstration

2-state system
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Derivation (instantaneous quantities)
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Derivation (instantaneous quantities)
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Derivation (time integration)

t d
L(p;,pr) < zf dt | Pu
0
w
T
Sf dtvV204 < \/ZTO'(A)
0

This is the desired result!

L(p,p")* 5 L(p,p")* s
25(A) 211(A)




Note: some development

Using Wasserstein distance W(p, p’) (a distance
defined in optimal transport theory), we have

W(p,p')?
<T
211(A)
and its equality is achievable (tight).

(A. Dechant, J. Phys. A Math. Theor. 55, 094001 (2022))

Its derivation is more technical and complicated.
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Problem: entropy production in
thermal relaxation process

Situation : relaxation process with a single heat bath
in continuous time. We assume LDB.

Goal : Deriving lower bound of entropy production
within 0 < t < 7 (denoted by gy )



Main result (Part 2)

D(p|lq) = X; p; an—Z : Kullback-Leibler divergence

(a kind of (pseudo-)distance)
(N. Shiraishi and K. Saito, PRL 123, 110603 (2019))



Significance

Only for relaxation processes (It does not hold
in general process).

Equality holds for both 7 = 0 and T = oo,

It does not hold in discrete time Markov chain.



Numerical demonstration

Setup : three-state model
Take a system with anomalous (two-step) relaxation.

__ '- -
| |
i 1
i !
15 |- I
i i
- 1
" 1
i |
10 - 1
i |
i i
i ' 4
i 4
ST e - - - -
B ¥ 4
I 7 J10,7]
| ’ _
N R LR T D{(p(O)||p(r))
I —— e - ! " L " L "
10 1000 10° 10



Geometric visualization

Relation ao ) = D(p(0)|Ip*?) — D(p(7)||p*7)
implies

D(p(0)|Ip*?) = D(p(0)||p(v)) + D(p(D)||p°?)

p(0)

Remark: p(T)

KL-divergence <> square of distance
larger than

right angle!

p©e



Restriction on possible trajectory

Given both initial and equilibrium distribution.
What is possible pass of relaxation processes?

Second law

state space




Restriction on possible trajectory

Obtained relation
D(p(0)|Ip¢?) = D(p(0)||p()) + D(p(7)||p?)

second law

p(0)

state space




Restriction on possible trajectory

Obtained relation
D(p(0)|Ip¢?) = D(p(0)||p()) + D(p(7)||p?)

second law

our result




Key relation: variational expression
of entropy production rate

d
6= =—DPO|Ip*)

Because right-hand side equals
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H(p) +a(E) =0



Key relation: variational expression
of entropy production rate

d
6= =—DPO|Ip*)

. _
= m;lx _— ED(P(Q | |CI(—t))_

q(—t) : distribution evolves backward in time
under the same transition matrix as p(t).

(N. Shiraishi and K. Saito, PRL 123, 110603 (2019))



Schematic of variational expression

. d |
¢ = —aD(p(t)IIq(—t))

Green lines : KL divergence D(p||q)

Difference between solid line and dashed line takes
maximum when g = p°®4.



Variational expression leads to
bound on relaxation processes

T/2 d
S == [ dtoDEOlla-0)
0

= D(p(0)|Ip(®)) P(0)

p(t/2)

From oo 7] = 0[o,z/2], W€ have
O10,7] = D(p(0)||p(7)) p(T)
= q(0)



Proof of variational expression

It suffices to prove

d
—[D(®I|q(=t)) — D®IIp*H] = 0

forany q.

The left-hand side is equal to

d _ p?q _
— (t) In—
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Proof of variational expression

i [Z Pt (qqu)}

q.
We used E : RijpjIn ( ) = —Rj;p;In ( : )
() P; P;



Proof of variational expression

(Weusedx —1—1nx% 0)
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Fluctuation oscillation phenomena

N a, b: state variable

Fluctuation oscillates in
., a-b plane.

(Y
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t=0 t=35s t=10s t=15s 1=20s
t=25s t=30s t=135s t=40s t=45s




Quantifying oscillation

\ Oscillation is quantified by
? : aup = (ab - ba)

To normalize the speed of oscillation by relaxation
speed, we introduce autocorrelation:

N 2
D, = —(aa) = Ez(ai —a;) Ryp;®
L,J

RN

Zaab
Da Db

Task: Bound by entropy production.




Main result (Part 3)

4 A
Z‘aab‘ < o
\Da + Dy, anosci)
Wosci 1S @ characteristic maximum angular speed of
oscillation: la,p |
Wosci *=

m max[af + b?]

/)\\ |aab|
K)zn max| a + b (N. Shiraishi, arXiv:2304.12775)




Physical meaning of main result

Zlaab‘ < o
D,+ Dy 21TwW g

Strength of oscillation
(relative to relaxation)

B
N

m max[a? + b?]

Entropy production per
single oscillation

-
Y




Geometric interpretation 1

o D,+D, 1 ,

Autocorrelatlon IS written as 2 = 22 Al]ll]
(L))

Aij . activity (N. Ohga, et al., arXiv:2303.13116)

lij = \/(ai — aj)z + (bi — bj)zz length fromitoj

1 (Clj,bj)
(Intuitive: autocorrelation = M(a, b,)
average squared displacement) -




Geometric interpretation 2

Fluctuation oscillation is evaluated as

Agp = z(aibj — biaj)Rijp}?S = z Sijlij
L,J

)

We define length from origin as r; = \/ai2 + bl-z.
1 (a;, b))

Important evaluation: |
s |
S.. < —Tilij < Ermaxli]' (i,l“ )

l]—z T




Proof

2 2
2|02, 2 (Z(i,j) Jijsij) r (Z(i,j) Jijlij)

[A
=
Qo
%

D, + Dy > i) Aifls; 2 2 Aili
< Tr2nax JZQ]
=9 2.4,

NU
-

2 2
Schwarz inequality: (ZJZ-J-ZZ-]) < (ZAZ'J'ZZZJ> ( jj>
(i-9)

(4,4) (4.7 )
\ J







Summary

* Trade-off relation between speed and entropy
production:  L(p,p’)?
20(A)
* Bound on entropy production in relaxation

PR 6 = D(p(0)]1p(D))

* Trade-off between oscillation and entropy
production

<T

Zlaabl < o

Da+Db B 2vaosci END
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