Addenda and Errata to "An Introduction to Stochastic Thermodynamics"

Naoto Shiraishi

1 Major changes

Errata on the convergence theorem (continuous time) in Sec.2.3

The present version (ver.1) of the textbook, the proof of the convergence theorem for continuous time (Sec.2.3, p27) has a logical gap ¹. Here we present an alternative proof for the theorem.

Claim. Let R be a $K \times K$ transition rate matrix with connectivity. Then, there exists $\kappa > 0$ such that for any finite t less than κ ($\kappa > t > 0$), all the matrix elements of e^{tR} is strictly positive.

Since $e^{tR}e^{t'R} = e^{(t+t')R}$ holds, it suffices to prove this theorem for our purpose.

Proof. Owing to the connectivity of R, for any elements (i, j) there exists $m \ge 0$ such that $(R^n)_{ij} = 0$ for $n \le m-1$ and $(R^m)_{ij} > 0$. Here, $(R^m)_{ij}$ is positive, because this term consists of the sum of products of strictly positive off-diagonal elements of R (the shortest paths from j to i). Then, the (i, j) elements of e^{tR} can be written as

$$(e^{tR})_{ij} = \sum_{n=0}^{\infty} \frac{t^n}{n!} (R^n)_{ij} = \sum_{n=m}^{\infty} \frac{t^n}{n!} (R^n)_{ij} = \frac{t^m}{m!} \left((R^m)_{ij} + f(t) \right), \tag{1}$$

where f(t) is a continuous function with f(0) = 0. The existence (i.e., convergence of infinite series) and continuity of f(t) follows from the convergence and continuity of e^{tR} .

Since f(t) is continuous and f(0) = 0, there exists κ_{ij} such that $\kappa_{ij} > t > 0$ implies $(R^m)_{ij} + f(t) > 0$. By setting $\kappa = \min_{i,j} \kappa_{ij}$, we arrive at the desired result.

Acknowledgement

I thank Hal Tasaki for pointing out the logical gap of the proof in the present version of the textbook.

2 Minor corrections

Chap.17

• The right-hand of (17.51): $\infty \to 1$.

Chap.18

• The right-hand side of (18.83):

$$\begin{split} \langle \delta E \rangle_{\tau} &:= \frac{1}{\tau} \int_{0}^{\tau} dt \left(\mathrm{Tr}[H(t)^{2} \rho(t)] - \mathrm{Tr}[H(t)\rho(t)]^{2} \right) \qquad (\text{incorrect}) \\ \langle \delta E \rangle_{\tau} &:= \frac{1}{\tau} \int_{0}^{\tau} dt \sqrt{\mathrm{Tr}[H(t)^{2}\rho(t)] - \mathrm{Tr}[H(t)\rho(t)]^{2}} \qquad (\text{correct}) \end{split}$$

• The explanation above (18.86) is incorrect (The correct direction of the inequality is its opposite:). We replace the description around (18.86) as follows:

Noting that $\arccos x$ behaves as $\sqrt{2(1-x)}$ around $x \simeq 1$, we have a key relation

$$\begin{aligned} \mathcal{L}(|\psi(t)\rangle, |\psi(t+\Delta t)\rangle) = &\sqrt{2(1-|\langle\psi(t)|\psi(t+\Delta t)\rangle|)} + o(\Delta t) \\ = &\frac{\sqrt{\Delta E^2}}{\hbar} \Delta t + o(\Delta t). \end{aligned}$$

• The right-hand side of (18.89) and (18.92): $\frac{\langle \delta E \rangle_{\tau}}{\hbar} \rightarrow \frac{\langle \delta E \rangle_{\tau}}{\hbar} \tau$.

Acknowledgement

I thank Mr. Kunimi for pointing out several improper descriptions.

¹In the textbook, $(I + \Delta t R)^N$ is considered and shown that all the matrix elements are strictly positive for large N and finite Δt . However, the above argument does not cover the case of $\Delta t \to 0$ with $N \to \infty$.