Addenda and Errata to "An Introduction to Stochastic Thermodynamics"

Naoto Shiraishi

1 Major changes

Errata on the convergence theorem (continuous time) in Sec.2.3

The present version (ver.1) of the textbook, the proof of the convergence theorem for continuous time (Sec.2.3, p27) has a logical gap ${ }^{1}$. Here we present an alternative proof for the theorem.

Claim. Let R be a $K \times K$ transition rate matrix with connectivity. Then, there exists $\kappa>0$ such that for any finite t less than $\kappa(\kappa>t>0)$, all the matrix elements of $e^{t R}$ is strictly positive.

Since $e^{t R} e^{t^{\prime} R}=e^{\left(t+t^{\prime}\right) R}$ holds, it suffices to prove this theorem for our purpose.
Proof. Owing to the connectivity of R, for any elements (i, j) there exists $m \geq 0$ such that $\left(R^{n}\right)_{i j}=0$ for $n \leq m-1$ and $\left(R^{m}\right)_{i j}>0$. Here, $\left(R^{m}\right)_{i j}$ is positive, because this term consists of the sum of products of strictly positive off-diagonal elements of R (the shortest paths from j to i. Then, the (i, j) elements of $e^{t R}$ can be written as

$$
\begin{equation*}
\left(e^{t R}\right)_{i j}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left(R^{n}\right)_{i j}=\sum_{n=m}^{\infty} \frac{t^{n}}{n!}\left(R^{n}\right)_{i j}=\frac{t^{m}}{m!}\left(\left(R^{m}\right)_{i j}+f(t)\right) \tag{1}
\end{equation*}
$$

where $f(t)$ is a continuous function with $f(0)=0$. The existence (i.e., convergence of infinite series) and continuity of $f(t)$ follows from the convergence and continuity of $e^{t R}$.

Since $f(t)$ is continuous and $f(0)=0$, there exists $\kappa_{i j}$ such that $\kappa_{i j}>t>0$ implies $\left(R^{m}\right)_{i j}+f(t)>0$. By setting $\kappa=\min _{i, j} \kappa_{i j}$, we arrive at the desired result.

Acknowledgement

I thank Hal Tasaki for pointing out the logical gap of the proof in the present version of the textbook.

2 Minor corrections

Chap. 17

- The right-hand of (17.51): $\infty \rightarrow 1$.

Chap. 18

- The right-hand side of (18.83):

$$
\begin{aligned}
\langle\delta E\rangle_{\tau} & :=\frac{1}{\tau} \int_{0}^{\tau} d t\left(\operatorname{Tr}\left[H(t)^{2} \rho(t)\right]-\operatorname{Tr}[H(t) \rho(t)]^{2}\right) \\
\langle\delta E\rangle_{\tau} & :=\frac{1}{\tau} \int_{0}^{\tau} d t \sqrt{\operatorname{Tr}\left[H(t)^{2} \rho(t)\right]-\operatorname{Tr}[H(t) \rho(t)]^{2}}
\end{aligned}
$$

- The explanation above (18.86) is incorrect (The correct direction of the inequality is its opposite:). We replace the description around (18.86) as follows:

Noting that $\arccos x$ behaves as $\sqrt{2(1-x)}$ around $x \simeq 1$, we have a key relation

$$
\begin{aligned}
\mathcal{L}(|\psi(t)\rangle,|\psi(t+\Delta t)\rangle) & =\sqrt{2(1-|\langle\psi(t) \mid \psi(t+\Delta t)\rangle|)}+o(\Delta t) \\
& =\frac{\sqrt{\Delta E^{2}}}{\hbar} \Delta t+o(\Delta t)
\end{aligned}
$$

- The right-hand side of (18.89) and (18.92): $\frac{\langle\delta E\rangle_{\tau}}{\hbar} \rightarrow \frac{\langle\delta E\rangle_{\tau}}{\hbar} \tau$.

Acknowledgement

I thank Mr. Kunimi for pointing out several improper descriptions.

[^0]
[^0]: ${ }^{1}$ In the textbook, $(I+\Delta t R)^{N}$ is considered and shown that all the matrix elements are strictly positive for large N and finite Δt. However, the above argument does not cover the case of $\Delta t \rightarrow 0$ with $N \rightarrow \infty$.

